nautilus_analysis/python/
mod.rs1pub mod analyzer;
19pub mod statistics;
20
21use pyo3::{prelude::*, pymodule};
22
23#[pymodule]
31pub fn analysis(_: Python<'_>, m: &Bound<'_, PyModule>) -> PyResult<()> {
32 m.add_class::<crate::analyzer::PortfolioAnalyzer>()?;
33
34 m.add_class::<crate::statistics::returns_avg::ReturnsAverage>()?;
36 m.add_class::<crate::statistics::returns_avg_loss::ReturnsAverageLoss>()?;
37 m.add_class::<crate::statistics::returns_avg_win::ReturnsAverageWin>()?;
38 m.add_class::<crate::statistics::returns_volatility::ReturnsVolatility>()?;
39 m.add_class::<crate::statistics::sharpe_ratio::SharpeRatio>()?;
40 m.add_class::<crate::statistics::sortino_ratio::SortinoRatio>()?;
41 m.add_class::<crate::statistics::profit_factor::ProfitFactor>()?;
42 m.add_class::<crate::statistics::risk_return_ratio::RiskReturnRatio>()?;
43
44 m.add_class::<crate::statistics::win_rate::WinRate>()?;
46 m.add_class::<crate::statistics::expectancy::Expectancy>()?;
47 m.add_class::<crate::statistics::winner_avg::AvgWinner>()?;
48 m.add_class::<crate::statistics::winner_max::MaxWinner>()?;
49 m.add_class::<crate::statistics::winner_min::MinWinner>()?;
50 m.add_class::<crate::statistics::loser_avg::AvgLoser>()?;
51 m.add_class::<crate::statistics::loser_max::MaxLoser>()?;
52 m.add_class::<crate::statistics::loser_min::MinLoser>()?;
53
54 m.add_class::<crate::statistics::long_ratio::LongRatio>()?;
56
57 Ok(())
58}