nautilus_analysis/statistics/
winner_avg.rsuse crate::statistic::PortfolioStatistic;
#[repr(C)]
#[derive(Debug)]
#[cfg_attr(
feature = "python",
pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
)]
pub struct AvgWinner {}
impl PortfolioStatistic for AvgWinner {
type Item = f64;
fn name(&self) -> String {
stringify!(AvgWinner).to_string()
}
fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
if realized_pnls.is_empty() {
return Some(0.0);
}
let winners: Vec<f64> = realized_pnls
.iter()
.filter(|&&pnl| pnl > 0.0)
.copied()
.collect();
if winners.is_empty() {
return Some(0.0);
}
let sum: f64 = winners.iter().sum();
Some(sum / winners.len() as f64)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_empty_pnls() {
let avg_winner = AvgWinner {};
let result = avg_winner.calculate_from_realized_pnls(&[]);
assert!(result.is_some());
assert_eq!(result.unwrap(), 0.0);
}
#[test]
fn test_no_winning_trades() {
let avg_winner = AvgWinner {};
let realized_pnls = vec![-100.0, -50.0, -200.0];
let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
assert!(result.is_some());
assert_eq!(result.unwrap(), 0.0);
}
#[test]
fn test_all_winning_trades() {
let avg_winner = AvgWinner {};
let realized_pnls = vec![100.0, 50.0, 200.0];
let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
assert!(result.is_some());
assert_eq!(result.unwrap(), 116.66666666666667);
}
#[test]
fn test_mixed_trades() {
let avg_winner = AvgWinner {};
let realized_pnls = vec![100.0, -50.0, 200.0, -100.0];
let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
assert!(result.is_some());
assert_eq!(result.unwrap(), 150.0);
}
#[test]
fn test_name() {
let avg_winner = AvgWinner {};
assert_eq!(avg_winner.name(), "AvgWinner");
}
}