nautilus_analysis/statistics/
winner_avg.rs1use crate::statistic::PortfolioStatistic;
17
18#[repr(C)]
19#[derive(Debug)]
20#[cfg_attr(
21 feature = "python",
22 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
23)]
24pub struct AvgWinner {}
25
26impl PortfolioStatistic for AvgWinner {
27 type Item = f64;
28
29 fn name(&self) -> String {
30 stringify!(AvgWinner).to_string()
31 }
32
33 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
34 if realized_pnls.is_empty() {
35 return Some(0.0);
36 }
37
38 let winners: Vec<f64> = realized_pnls
39 .iter()
40 .filter(|&&pnl| pnl > 0.0)
41 .copied()
42 .collect();
43
44 if winners.is_empty() {
45 return Some(0.0);
46 }
47
48 let sum: f64 = winners.iter().sum();
49 Some(sum / winners.len() as f64)
50 }
51}
52
53#[cfg(test)]
54mod tests {
55 use super::*;
56
57 #[test]
58 fn test_empty_pnls() {
59 let avg_winner = AvgWinner {};
60 let result = avg_winner.calculate_from_realized_pnls(&[]);
61 assert!(result.is_some());
62 assert_eq!(result.unwrap(), 0.0);
63 }
64
65 #[test]
66 fn test_no_winning_trades() {
67 let avg_winner = AvgWinner {};
68 let realized_pnls = vec![-100.0, -50.0, -200.0];
69 let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
70 assert!(result.is_some());
71 assert_eq!(result.unwrap(), 0.0);
72 }
73
74 #[test]
75 fn test_all_winning_trades() {
76 let avg_winner = AvgWinner {};
77 let realized_pnls = vec![100.0, 50.0, 200.0];
78 let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
79 assert!(result.is_some());
80 assert_eq!(result.unwrap(), 116.66666666666667);
81 }
82
83 #[test]
84 fn test_mixed_trades() {
85 let avg_winner = AvgWinner {};
86 let realized_pnls = vec![100.0, -50.0, 200.0, -100.0];
87 let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
88 assert!(result.is_some());
89 assert_eq!(result.unwrap(), 150.0);
90 }
91
92 #[test]
93 fn test_name() {
94 let avg_winner = AvgWinner {};
95 assert_eq!(avg_winner.name(), "AvgWinner");
96 }
97}