1use std::{sync::Arc, vec::IntoIter};
17
18use binary_heap_plus::{BinaryHeap, PeekMut};
19use compare::Compare;
20use futures::{Stream, StreamExt};
21use tokio::{
22 runtime::Runtime,
23 sync::mpsc::{self, Receiver},
24 task::JoinHandle,
25};
26
27pub struct EagerStream<T> {
28 rx: Receiver<T>,
29 task: JoinHandle<()>,
30 runtime: Arc<Runtime>,
31}
32
33impl<T> EagerStream<T> {
34 pub fn from_stream_with_runtime<S>(stream: S, runtime: Arc<Runtime>) -> Self
35 where
36 S: Stream<Item = T> + Send + 'static,
37 T: Send + 'static,
38 {
39 let _guard = runtime.enter();
40 let (tx, rx) = mpsc::channel(1);
41 let task = tokio::spawn(async move {
42 stream
43 .for_each(|item| async {
44 let _ = tx.send(item).await;
45 })
46 .await;
47 });
48
49 Self { rx, task, runtime }
50 }
51}
52
53impl<T> Iterator for EagerStream<T> {
54 type Item = T;
55
56 fn next(&mut self) -> Option<Self::Item> {
57 self.runtime.block_on(self.rx.recv())
58 }
59}
60
61impl<T> Drop for EagerStream<T> {
62 fn drop(&mut self) {
63 self.rx.close();
64 self.task.abort();
65 }
66}
67
68pub struct ElementBatchIter<I, T>
71where
72 I: Iterator<Item = IntoIter<T>>,
73{
74 pub item: T,
75 batch: I::Item,
76 iter: I,
77}
78
79impl<I, T> ElementBatchIter<I, T>
80where
81 I: Iterator<Item = IntoIter<T>>,
82{
83 fn new_from_iter(mut iter: I) -> Option<Self> {
84 loop {
85 match iter.next() {
86 Some(mut batch) => match batch.next() {
87 Some(item) => {
88 break Some(Self { item, batch, iter });
89 }
90 None => continue,
91 },
92 None => break None,
93 }
94 }
95 }
96}
97
98pub struct KMerge<I, T, C>
99where
100 I: Iterator<Item = IntoIter<T>>,
101{
102 heap: BinaryHeap<ElementBatchIter<I, T>, C>,
103}
104
105impl<I, T, C> KMerge<I, T, C>
106where
107 I: Iterator<Item = IntoIter<T>>,
108 C: Compare<ElementBatchIter<I, T>>,
109{
110 pub fn new(cmp: C) -> Self {
112 Self {
113 heap: BinaryHeap::from_vec_cmp(Vec::new(), cmp),
114 }
115 }
116
117 pub fn push_iter(&mut self, s: I) {
118 if let Some(heap_elem) = ElementBatchIter::new_from_iter(s) {
119 self.heap.push(heap_elem);
120 }
121 }
122
123 pub fn clear(&mut self) {
124 self.heap.clear();
125 }
126}
127
128impl<I, T, C> Iterator for KMerge<I, T, C>
129where
130 I: Iterator<Item = IntoIter<T>>,
131 C: Compare<ElementBatchIter<I, T>>,
132{
133 type Item = T;
134
135 fn next(&mut self) -> Option<Self::Item> {
136 match self.heap.peek_mut() {
137 Some(mut heap_elem) => {
138 match heap_elem.batch.next() {
140 Some(mut item) => {
143 std::mem::swap(&mut item, &mut heap_elem.item);
144 Some(item)
145 }
146 None => loop {
149 if let Some(mut batch) = heap_elem.iter.next() {
150 match batch.next() {
151 Some(mut item) => {
152 heap_elem.batch = batch;
153 std::mem::swap(&mut item, &mut heap_elem.item);
154 break Some(item);
155 }
156 None => continue,
158 }
159 } else {
160 let ElementBatchIter {
161 item,
162 batch: _,
163 iter: _,
164 } = PeekMut::pop(heap_elem);
165 break Some(item);
166 }
167 },
168 }
169 }
170 None => None,
171 }
172 }
173}
174
175#[cfg(test)]
179mod tests {
180
181 use proptest::prelude::*;
182 use rstest::rstest;
183
184 use super::*;
185
186 struct OrdComparator;
187 impl<S> Compare<ElementBatchIter<S, i32>> for OrdComparator
188 where
189 S: Iterator<Item = IntoIter<i32>>,
190 {
191 fn compare(
192 &self,
193 l: &ElementBatchIter<S, i32>,
194 r: &ElementBatchIter<S, i32>,
195 ) -> std::cmp::Ordering {
196 l.item.cmp(&r.item).reverse()
198 }
199 }
200
201 impl<S> Compare<ElementBatchIter<S, u64>> for OrdComparator
202 where
203 S: Iterator<Item = IntoIter<u64>>,
204 {
205 fn compare(
206 &self,
207 l: &ElementBatchIter<S, u64>,
208 r: &ElementBatchIter<S, u64>,
209 ) -> std::cmp::Ordering {
210 l.item.cmp(&r.item).reverse()
212 }
213 }
214
215 #[rstest]
216 fn test1() {
217 let iter_a = vec![vec![1, 2, 3].into_iter(), vec![7, 8, 9].into_iter()].into_iter();
218 let iter_b = vec![vec![4, 5, 6].into_iter()].into_iter();
219 let mut kmerge: KMerge<_, i32, _> = KMerge::new(OrdComparator);
220 kmerge.push_iter(iter_a);
221 kmerge.push_iter(iter_b);
222
223 let values: Vec<i32> = kmerge.collect();
224 assert_eq!(values, vec![1, 2, 3, 4, 5, 6, 7, 8, 9]);
225 }
226
227 #[rstest]
228 fn test2() {
229 let iter_a = vec![vec![1, 2, 6].into_iter(), vec![7, 8, 9].into_iter()].into_iter();
230 let iter_b = vec![vec![3, 4, 5, 6].into_iter()].into_iter();
231 let mut kmerge: KMerge<_, i32, _> = KMerge::new(OrdComparator);
232 kmerge.push_iter(iter_a);
233 kmerge.push_iter(iter_b);
234
235 let values: Vec<i32> = kmerge.collect();
236 assert_eq!(values, vec![1, 2, 3, 4, 5, 6, 6, 7, 8, 9]);
237 }
238
239 #[rstest]
240 fn test3() {
241 let iter_a = vec![vec![1, 4, 7].into_iter(), vec![24, 35, 56].into_iter()].into_iter();
242 let iter_b = vec![vec![2, 4, 8].into_iter()].into_iter();
243 let iter_c = vec![vec![3, 5, 9].into_iter(), vec![12, 12, 90].into_iter()].into_iter();
244 let mut kmerge: KMerge<_, i32, _> = KMerge::new(OrdComparator);
245 kmerge.push_iter(iter_a);
246 kmerge.push_iter(iter_b);
247 kmerge.push_iter(iter_c);
248
249 let values: Vec<i32> = kmerge.collect();
250 assert_eq!(
251 values,
252 vec![1, 2, 3, 4, 4, 5, 7, 8, 9, 12, 12, 24, 35, 56, 90]
253 );
254 }
255
256 #[rstest]
257 fn test5() {
258 let iter_a = vec![
259 vec![1, 3, 5].into_iter(),
260 vec![].into_iter(),
261 vec![7, 9, 11].into_iter(),
262 ]
263 .into_iter();
264 let iter_b = vec![vec![2, 4, 6].into_iter()].into_iter();
265 let mut kmerge: KMerge<_, i32, _> = KMerge::new(OrdComparator);
266 kmerge.push_iter(iter_a);
267 kmerge.push_iter(iter_b);
268
269 let values: Vec<i32> = kmerge.collect();
270 assert_eq!(values, vec![1, 2, 3, 4, 5, 6, 7, 9, 11]);
271 }
272
273 #[derive(Debug, Clone)]
274 struct SortedNestedVec(Vec<Vec<u64>>);
275
276 fn sorted_nested_vec_strategy() -> impl Strategy<Value = SortedNestedVec> {
278 prop::collection::vec(any::<u64>(), 0..=100).prop_flat_map(|mut flat_vec| {
280 flat_vec.sort_unstable();
281
282 let total_len = flat_vec.len();
284 if total_len == 0 {
285 return Just(SortedNestedVec(vec![vec![]])).boxed();
286 }
287
288 prop::collection::vec(0..=total_len, 0..=10)
290 .prop_map(move |mut boundaries| {
291 boundaries.push(0);
292 boundaries.push(total_len);
293 boundaries.sort_unstable();
294 boundaries.dedup();
295
296 let mut nested_vec = Vec::new();
297 for window in boundaries.windows(2) {
298 let start = window[0];
299 let end = window[1];
300 nested_vec.push(flat_vec[start..end].to_vec());
301 }
302
303 SortedNestedVec(nested_vec)
304 })
305 .boxed()
306 })
307 }
308
309 proptest! {
314 #[test]
316 fn prop_kmerge_equivalent_to_sort(
317 all_data in prop::collection::vec(sorted_nested_vec_strategy(), 0..=10)
318 ) {
319 let mut kmerge: KMerge<_, u64, _> = KMerge::new(OrdComparator);
320
321 let copy_data = all_data.clone();
322 for stream in copy_data {
323 let input = stream.0.into_iter().map(std::iter::IntoIterator::into_iter);
324 kmerge.push_iter(input);
325 }
326 let merged_data: Vec<u64> = kmerge.collect();
327
328 let mut sorted_data: Vec<u64> = all_data
329 .into_iter()
330 .flat_map(|stream| stream.0.into_iter().flatten())
331 .collect();
332 sorted_data.sort_unstable();
333
334 prop_assert_eq!(merged_data.len(), sorted_data.len(), "Lengths should be equal");
335 prop_assert_eq!(merged_data, sorted_data, "Merged data should equal sorted data");
336 }
337
338 #[test]
340 fn prop_kmerge_preserves_sort_order(
341 all_data in prop::collection::vec(sorted_nested_vec_strategy(), 1..=5)
342 ) {
343 let mut kmerge: KMerge<_, u64, _> = KMerge::new(OrdComparator);
344
345 for stream in all_data {
346 let input = stream.0.into_iter().map(std::iter::IntoIterator::into_iter);
347 kmerge.push_iter(input);
348 }
349 let merged_data: Vec<u64> = kmerge.collect();
350
351 for window in merged_data.windows(2) {
353 prop_assert!(window[0] <= window[1], "Merged data should be sorted");
354 }
355 }
356
357 #[test]
359 fn prop_kmerge_handles_empty_iterators(
360 data in sorted_nested_vec_strategy(),
361 empty_count in 0usize..=5
362 ) {
363 let mut kmerge_with_empty: KMerge<_, u64, _> = KMerge::new(OrdComparator);
364 let mut kmerge_without_empty: KMerge<_, u64, _> = KMerge::new(OrdComparator);
365
366 let input_with_empty = data.0.clone().into_iter().map(std::iter::IntoIterator::into_iter);
368 let input_without_empty = data.0.into_iter().map(std::iter::IntoIterator::into_iter);
369
370 kmerge_with_empty.push_iter(input_with_empty);
371 kmerge_without_empty.push_iter(input_without_empty);
372
373 for _ in 0..empty_count {
375 let empty_vec: Vec<Vec<u64>> = vec![];
376 let empty_input = empty_vec.into_iter().map(std::iter::IntoIterator::into_iter);
377 kmerge_with_empty.push_iter(empty_input);
378 }
379
380 let result_with_empty: Vec<u64> = kmerge_with_empty.collect();
381 let result_without_empty: Vec<u64> = kmerge_without_empty.collect();
382
383 prop_assert_eq!(result_with_empty, result_without_empty, "Empty iterators should not affect result");
384 }
385 }
386}