nautilus_persistence/backend/session.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
// -------------------------------------------------------------------------------------------------
// Copyright (C) 2015-2024 Nautech Systems Pty Ltd. All rights reserved.
// https://nautechsystems.io
//
// Licensed under the GNU Lesser General Public License Version 3.0 (the "License");
// You may not use this file except in compliance with the License.
// You may obtain a copy of the License at https://www.gnu.org/licenses/lgpl-3.0.en.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// -------------------------------------------------------------------------------------------------
use std::{collections::HashMap, sync::Arc, vec::IntoIter};
use compare::Compare;
use datafusion::{
error::Result, logical_expr::expr::Sort, physical_plan::SendableRecordBatchStream, prelude::*,
};
use futures::StreamExt;
use nautilus_core::ffi::cvec::CVec;
use nautilus_model::data::{Data, GetTsInit};
use nautilus_serialization::arrow::{
DataStreamingError, DecodeDataFromRecordBatch, EncodeToRecordBatch, WriteStream,
};
use super::kmerge_batch::{EagerStream, ElementBatchIter, KMerge};
#[derive(Debug, Default)]
pub struct TsInitComparator;
impl<I> Compare<ElementBatchIter<I, Data>> for TsInitComparator
where
I: Iterator<Item = IntoIter<Data>>,
{
fn compare(
&self,
l: &ElementBatchIter<I, Data>,
r: &ElementBatchIter<I, Data>,
) -> std::cmp::Ordering {
// Max heap ordering must be reversed
l.item.ts_init().cmp(&r.item.ts_init()).reverse()
}
}
pub type QueryResult = KMerge<EagerStream<std::vec::IntoIter<Data>>, Data, TsInitComparator>;
/// Provides a DataFusion session and registers DataFusion queries.
///
/// The session is used to register data sources and make queries on them. A
/// query returns a Chunk of Arrow records. It is decoded and converted into
/// a Vec of data by types that implement [`DecodeDataFromRecordBatch`].
#[cfg_attr(
feature = "python",
pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.persistence")
)]
pub struct DataBackendSession {
pub chunk_size: usize,
pub runtime: Arc<tokio::runtime::Runtime>,
session_ctx: SessionContext,
batch_streams: Vec<EagerStream<IntoIter<Data>>>,
}
impl DataBackendSession {
/// Creates a new [`DataBackendSession`] instance.
#[must_use]
pub fn new(chunk_size: usize) -> Self {
let runtime = tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap();
let session_cfg = SessionConfig::new()
.set_str("datafusion.optimizer.repartition_file_scans", "false")
.set_str("datafusion.optimizer.prefer_existing_sort", "true");
let session_ctx = SessionContext::new_with_config(session_cfg);
Self {
session_ctx,
batch_streams: Vec::default(),
chunk_size,
runtime: Arc::new(runtime),
}
}
pub fn write_data<T: EncodeToRecordBatch>(
data: &[T],
metadata: &HashMap<String, String>,
stream: &mut dyn WriteStream,
) -> Result<(), DataStreamingError> {
let record_batch = T::encode_batch(metadata, data)?;
stream.write(&record_batch)?;
Ok(())
}
/// Query a file for its records. the caller must specify `T` to indicate
/// the kind of data expected from this query.
///
/// `table_name`: Logical `table_name` assigned to this file. Queries to this file should address the
/// file by its table name.
/// `file_path`: Path to file
/// `sql_query`: A custom sql query to retrieve records from file. If no query is provided a default
/// query "SELECT * FROM <`table_name`>" is run.
///
/// # Safety
///
/// The file data must be ordered by the `ts_init` in ascending order for this
/// to work correctly.
pub fn add_file<T>(
&mut self,
table_name: &str,
file_path: &str,
sql_query: Option<&str>,
) -> Result<()>
where
T: DecodeDataFromRecordBatch + Into<Data>,
{
let parquet_options = ParquetReadOptions::<'_> {
skip_metadata: Some(false),
file_sort_order: vec![vec![Sort {
expr: col("ts_init"),
asc: true,
nulls_first: false,
}]],
..Default::default()
};
self.runtime.block_on(self.session_ctx.register_parquet(
table_name,
file_path,
parquet_options,
))?;
let default_query = format!("SELECT * FROM {} ORDER BY ts_init", &table_name);
let sql_query = sql_query.unwrap_or(&default_query);
let query = self.runtime.block_on(self.session_ctx.sql(sql_query))?;
let batch_stream = self.runtime.block_on(query.execute_stream())?;
self.add_batch_stream::<T>(batch_stream);
Ok(())
}
fn add_batch_stream<T>(&mut self, stream: SendableRecordBatchStream)
where
T: DecodeDataFromRecordBatch + Into<Data>,
{
let transform = stream.map(|result| match result {
Ok(batch) => T::decode_data_batch(batch.schema().metadata(), batch)
.unwrap()
.into_iter(),
Err(e) => panic!("Error getting next batch from RecordBatchStream: {e}"),
});
self.batch_streams
.push(EagerStream::from_stream_with_runtime(
transform,
self.runtime.clone(),
));
}
// Consumes the registered queries and returns a [`QueryResult].
// Passes the output of the query though the a KMerge which sorts the
// queries in ascending order of `ts_init`.
// QueryResult is an iterator that return Vec<Data>.
pub fn get_query_result(&mut self) -> QueryResult {
let mut kmerge: KMerge<_, _, _> = KMerge::new(TsInitComparator);
self.batch_streams
.drain(..)
.for_each(|eager_stream| kmerge.push_iter(eager_stream));
kmerge
}
}
// Note: Intended to be used on a single Python thread
unsafe impl Send for DataBackendSession {}
#[cfg_attr(
feature = "python",
pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.persistence")
)]
pub struct DataQueryResult {
pub chunk: Option<CVec>,
pub result: QueryResult,
pub acc: Vec<Data>,
pub size: usize,
}
impl DataQueryResult {
/// Creates a new [`DataQueryResult`] instance.
#[must_use]
pub const fn new(result: QueryResult, size: usize) -> Self {
Self {
chunk: None,
result,
acc: Vec::new(),
size,
}
}
/// Set new `CVec` backed chunk from data
///
/// It also drops previously allocated chunk
pub fn set_chunk(&mut self, data: Vec<Data>) -> CVec {
self.drop_chunk();
let chunk: CVec = data.into();
self.chunk = Some(chunk);
chunk
}
/// Chunks generated by iteration must be dropped after use, otherwise
/// it will leak memory. Current chunk is held by the reader,
/// drop if exists and reset the field.
pub fn drop_chunk(&mut self) {
if let Some(CVec { ptr, len, cap }) = self.chunk.take() {
let data: Vec<Data> =
unsafe { Vec::from_raw_parts(ptr.cast::<nautilus_model::data::Data>(), len, cap) };
drop(data);
}
}
}
impl Iterator for DataQueryResult {
type Item = Vec<Data>;
fn next(&mut self) -> Option<Self::Item> {
for _ in 0..self.size {
match self.result.next() {
Some(item) => self.acc.push(item),
None => break,
}
}
// TODO: consider using drain here if perf is unchanged
// Some(self.acc.drain(0..).collect())
let mut acc: Vec<Data> = Vec::new();
std::mem::swap(&mut acc, &mut self.acc);
Some(acc)
}
}
impl Drop for DataQueryResult {
fn drop(&mut self) {
self.drop_chunk();
self.result.clear();
}
}
// Note: Intended to be used on a single Python thread
unsafe impl Send for DataQueryResult {}