nautilus_analysis/python/statistics/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// -------------------------------------------------------------------------------------------------
// Copyright (C) 2015-2025 Nautech Systems Pty Ltd. All rights reserved.
// https://nautechsystems.io
//
// Licensed under the GNU Lesser General Public License Version 3.0 (the "License");
// You may not use this file except in compliance with the License.
// You may obtain a copy of the License at https://www.gnu.org/licenses/lgpl-3.0.en.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// -------------------------------------------------------------------------------------------------
pub mod expectancy;
pub mod long_ratio;
pub mod loser_avg;
pub mod loser_max;
pub mod loser_min;
pub mod profit_factor;
pub mod returns_avg;
pub mod returns_avg_loss;
pub mod returns_avg_win;
pub mod returns_volatlity;
pub mod risk_return_ratio;
pub mod sharpe_ratio;
pub mod sortino_ratio;
pub mod win_rate;
pub mod winner_avg;
pub mod winner_max;
pub mod winner_min;
use std::collections::BTreeMap;
use nautilus_core::UnixNanos;
fn transform_returns(raw_returns: BTreeMap<u64, f64>) -> BTreeMap<UnixNanos, f64> {
raw_returns
.keys()
.map(|&k| (UnixNanos::from(k), raw_returns[&k]))
.collect()
}