nautilus_analysis/statistics/cagr.rs
1// -------------------------------------------------------------------------------------------------
2// Copyright (C) 2015-2025 Nautech Systems Pty Ltd. All rights reserved.
3// https://nautechsystems.io
4//
5// Licensed under the GNU Lesser General Public License Version 3.0 (the "License");
6// You may not use this file except in compliance with the License.
7// You may obtain a copy of the License at https://www.gnu.org/licenses/lgpl-3.0.en.html
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14// -------------------------------------------------------------------------------------------------
15
16//! Compound Annual Growth Rate (CAGR) statistic.
17
18use std::collections::BTreeMap;
19
20use nautilus_core::UnixNanos;
21
22use crate::statistic::PortfolioStatistic;
23
24/// Calculates the Compound Annual Growth Rate (CAGR) for returns.
25///
26/// CAGR represents the mean annual growth rate of an investment over a specified period,
27/// assuming the profits were reinvested at the end of each period.
28///
29/// Formula: CAGR = (Ending Value / Beginning Value)^(Period/Days) - 1
30///
31/// For returns: CAGR = ((1 + Total Return)^(Period/Days)) - 1
32#[repr(C)]
33#[derive(Debug, Clone)]
34#[cfg_attr(
35 feature = "python",
36 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
37)]
38pub struct CAGR {
39 /// The number of periods per year for annualization (e.g., 252 for trading days).
40 pub period: usize,
41}
42
43impl CAGR {
44 /// Creates a new [`CAGR`] instance.
45 #[must_use]
46 pub fn new(period: Option<usize>) -> Self {
47 Self {
48 period: period.unwrap_or(252),
49 }
50 }
51}
52
53impl PortfolioStatistic for CAGR {
54 type Item = f64;
55
56 fn name(&self) -> String {
57 format!("CAGR ({} days)", self.period)
58 }
59
60 fn calculate_from_returns(&self, returns: &BTreeMap<UnixNanos, f64>) -> Option<Self::Item> {
61 if returns.is_empty() {
62 return Some(0.0);
63 }
64
65 // Downsample to daily bins to count actual trading days (not calendar days or trade count)
66 let daily_returns = self.downsample_to_daily_bins(returns);
67
68 // Calculate total return (cumulative)
69 let total_return: f64 = daily_returns.values().map(|&r| 1.0 + r).product::<f64>() - 1.0;
70
71 // Use the number of trading days (bins) for annualization
72 // Minimum of 1 day to handle intraday-only strategies
73 let days = daily_returns.len().max(1) as f64;
74
75 // CAGR = (1 + total_return)^(period/days) - 1
76 let cagr = (1.0 + total_return).powf(self.period as f64 / days) - 1.0;
77
78 if cagr.is_finite() {
79 Some(cagr)
80 } else {
81 Some(0.0)
82 }
83 }
84}
85
86////////////////////////////////////////////////////////////////////////////////
87// Tests
88////////////////////////////////////////////////////////////////////////////////
89
90#[cfg(test)]
91mod tests {
92 use rstest::rstest;
93
94 use super::*;
95
96 fn create_returns(values: Vec<f64>) -> BTreeMap<UnixNanos, f64> {
97 let mut returns = BTreeMap::new();
98 let nanos_per_day = 86_400_000_000_000;
99 let start_time = 1_600_000_000_000_000_000;
100
101 for (i, &value) in values.iter().enumerate() {
102 let timestamp = start_time + i as u64 * nanos_per_day;
103 returns.insert(UnixNanos::from(timestamp), value);
104 }
105
106 returns
107 }
108
109 #[rstest]
110 fn test_name() {
111 let cagr = CAGR::new(Some(252));
112 assert_eq!(cagr.name(), "CAGR (252 days)");
113 }
114
115 #[rstest]
116 fn test_empty_returns() {
117 let cagr = CAGR::new(Some(252));
118 let returns = BTreeMap::new();
119 let result = cagr.calculate_from_returns(&returns);
120 assert_eq!(result, Some(0.0));
121 }
122
123 #[rstest]
124 fn test_positive_cagr() {
125 let cagr = CAGR::new(Some(252));
126 // Simulate 252 days with 0.1% daily return
127 // Total return = (1.001)^252 - 1 ≈ 0.288 (28.8%)
128 // CAGR should be approximately same as total return for full year
129 let returns = create_returns(vec![0.001; 252]);
130 let result = cagr.calculate_from_returns(&returns).unwrap();
131
132 // For 252 days of 0.1% daily return
133 // CAGR = (1 + 0.288)^(252/252) - 1 = 0.288
134 assert!((result - 0.288).abs() < 0.01);
135 }
136
137 #[rstest]
138 fn test_cagr_half_year() {
139 let cagr = CAGR::new(Some(252));
140 // Simulate 126 days (half year) with total return of 10%
141 let daily_return = (1.10_f64.powf(1.0 / 126.0)) - 1.0;
142 let returns = create_returns(vec![daily_return; 126]);
143 let result = cagr.calculate_from_returns(&returns).unwrap();
144
145 // CAGR should annualize the 10% half-year return
146 // CAGR = (1.10)^(252/126) - 1 = (1.10)^2 - 1 ≈ 0.21 (21%)
147 assert!((result - 0.21).abs() < 0.01);
148 }
149
150 #[rstest]
151 fn test_negative_returns() {
152 let cagr = CAGR::new(Some(252));
153 // Simulate losses
154 let returns = create_returns(vec![-0.001; 252]);
155 let result = cagr.calculate_from_returns(&returns).unwrap();
156
157 // Should be negative
158 assert!(result < 0.0);
159 }
160
161 #[rstest]
162 fn test_multiple_trades_per_day() {
163 let cagr = CAGR::new(Some(252));
164
165 // Simulate 500 trades over 252 days
166 let mut returns = BTreeMap::new();
167 let nanos_per_day = 86_400_000_000_000;
168 let start_time = 1_600_000_000_000_000_000;
169
170 // Create 500 trades with small returns spread across 252 days (~2 trades per day)
171 for i in 0..500 {
172 let day = (i * 252) / 500; // Map trade index to day
173 let timestamp =
174 start_time + day as u64 * nanos_per_day + (i % 3) as u64 * 1_000_000_000;
175 returns.insert(UnixNanos::from(timestamp), 0.0005);
176 }
177
178 let result = cagr.calculate_from_returns(&returns).unwrap();
179
180 // With downsample_to_daily_bins, we get 252 bins (trading days)
181 // Daily returns are aggregated, then we compound and annualize
182 // The CAGR should reflect 252 trading days, NOT 500 trades
183 assert!((result - 0.285).abs() < 0.02);
184 assert!(result > 0.2); // Should be much higher than what trade-count formula would give
185 }
186
187 #[rstest]
188 fn test_intraday_trading() {
189 let cagr = CAGR::new(Some(252));
190
191 // Simulate multiple trades within a single day
192 let mut returns = BTreeMap::new();
193 let start_time = 1_600_000_000_000_000_000;
194
195 // 10 trades within the same day, each with 1% return
196 for i in 0..10 {
197 let timestamp = start_time + i as u64 * 3_600_000_000_000; // 1 hour apart
198 returns.insert(UnixNanos::from(timestamp), 0.01);
199 }
200
201 let result = cagr.calculate_from_returns(&returns).unwrap();
202
203 // Total return: (1.01)^10 - 1 ≈ 0.1046 (10.46%)
204 // This should be treated as 1 trading day
205 // Annualized: (1.1046)^(252/1) - 1 = very large number
206 // The key is it should NOT return 0.0
207 assert!(result > 0.0);
208 assert!(result.is_finite());
209 }
210}