nautilus_analysis/statistics/
loser_avg.rs1use std::fmt::{self, Display};
17
18use nautilus_model::position::Position;
19
20use crate::{Returns, statistic::PortfolioStatistic};
21
22#[repr(C)]
23#[derive(Debug, Clone)]
24#[cfg_attr(
25 feature = "python",
26 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
27)]
28pub struct AvgLoser {}
29
30impl Display for AvgLoser {
31 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
32 write!(f, "Avg Loser")
33 }
34}
35
36impl PortfolioStatistic for AvgLoser {
37 type Item = f64;
38
39 fn name(&self) -> String {
40 self.to_string()
41 }
42
43 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
44 if realized_pnls.is_empty() {
45 return Some(0.0);
46 }
47
48 let losers: Vec<f64> = realized_pnls
49 .iter()
50 .filter(|&&pnl| pnl <= 0.0)
51 .copied()
52 .collect();
53
54 if losers.is_empty() {
55 return Some(0.0);
56 }
57
58 let sum: f64 = losers.iter().sum();
59 Some(sum / losers.len() as f64)
60 }
61
62 fn calculate_from_returns(&self, _returns: &Returns) -> Option<Self::Item> {
63 None
64 }
65
66 fn calculate_from_positions(&self, _positions: &[Position]) -> Option<Self::Item> {
67 None
68 }
69}
70
71#[cfg(test)]
76mod tests {
77 use nautilus_core::approx_eq;
78 use rstest::rstest;
79
80 use super::*;
81
82 #[rstest]
83 fn test_empty_pnls() {
84 let avg_loser = AvgLoser {};
85 let result = avg_loser.calculate_from_realized_pnls(&[]);
86 assert!(result.is_some());
87 assert!(approx_eq!(f64, result.unwrap(), 0.0, epsilon = 1e-9));
88 }
89
90 #[rstest]
91 fn test_no_losers() {
92 let avg_loser = AvgLoser {};
93 let pnls = vec![10.0, 20.0, 30.0];
94 let result = avg_loser.calculate_from_realized_pnls(&pnls);
95 assert!(result.is_some());
96 assert!(approx_eq!(f64, result.unwrap(), 0.0, epsilon = 1e-9));
97 }
98
99 #[rstest]
100 fn test_only_losers() {
101 let avg_loser = AvgLoser {};
102 let pnls = vec![-10.0, -20.0, -30.0];
103 let result = avg_loser.calculate_from_realized_pnls(&pnls);
104 assert!(result.is_some());
105 assert!(approx_eq!(f64, result.unwrap(), -20.0, epsilon = 1e-9));
106 }
107
108 #[rstest]
109 fn test_mixed_pnls() {
110 let avg_loser = AvgLoser {};
111 let pnls = vec![10.0, -20.0, 30.0, -40.0];
112 let result = avg_loser.calculate_from_realized_pnls(&pnls);
113 assert!(result.is_some());
114 assert!(approx_eq!(f64, result.unwrap(), -30.0, epsilon = 1e-9));
115 }
116
117 #[rstest]
118 fn test_zero_included() {
119 let avg_loser = AvgLoser {};
120 let pnls = vec![10.0, 0.0, -20.0, -30.0];
121 let result = avg_loser.calculate_from_realized_pnls(&pnls);
122 assert!(result.is_some());
123 assert!(approx_eq!(
125 f64,
126 result.unwrap(),
127 -16.666666666666668,
128 epsilon = 1e-9
129 ));
130 }
131
132 #[rstest]
133 fn test_single_loser() {
134 let avg_loser = AvgLoser {};
135 let pnls = vec![-10.0];
136 let result = avg_loser.calculate_from_realized_pnls(&pnls);
137 assert!(result.is_some());
138 assert!(approx_eq!(f64, result.unwrap(), -10.0, epsilon = 1e-9));
139 }
140
141 #[rstest]
142 fn test_name() {
143 let avg_loser = AvgLoser {};
144 assert_eq!(avg_loser.name(), "Avg Loser");
145 }
146}