nautilus_analysis/statistics/
loser_avg.rs1use std::fmt::Display;
17
18use nautilus_model::position::Position;
19
20use crate::{Returns, statistic::PortfolioStatistic};
21
22#[repr(C)]
23#[derive(Debug, Clone)]
24#[cfg_attr(
25 feature = "python",
26 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
27)]
28pub struct AvgLoser {}
29
30impl Display for AvgLoser {
31 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
32 write!(f, "Avg Loser")
33 }
34}
35
36impl PortfolioStatistic for AvgLoser {
37 type Item = f64;
38
39 fn name(&self) -> String {
40 self.to_string()
41 }
42
43 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
44 if realized_pnls.is_empty() {
45 return Some(f64::NAN);
46 }
47
48 let losers: Vec<f64> = realized_pnls
49 .iter()
50 .filter(|&&pnl| pnl < 0.0)
51 .copied()
52 .collect();
53
54 if losers.is_empty() {
55 return Some(f64::NAN);
56 }
57
58 let sum: f64 = losers.iter().sum();
59 Some(sum / losers.len() as f64)
60 }
61
62 fn calculate_from_returns(&self, _returns: &Returns) -> Option<Self::Item> {
63 None
64 }
65
66 fn calculate_from_positions(&self, _positions: &[Position]) -> Option<Self::Item> {
67 None
68 }
69}
70
71#[cfg(test)]
72mod tests {
73 use nautilus_core::approx_eq;
74 use rstest::rstest;
75
76 use super::*;
77
78 #[rstest]
79 fn test_empty_pnls() {
80 let avg_loser = AvgLoser {};
81 let result = avg_loser.calculate_from_realized_pnls(&[]);
82 assert!(result.is_some());
83 assert!(result.unwrap().is_nan());
84 }
85
86 #[rstest]
87 fn test_no_losers() {
88 let avg_loser = AvgLoser {};
89 let pnls = vec![10.0, 20.0, 30.0];
90 let result = avg_loser.calculate_from_realized_pnls(&pnls);
91 assert!(result.is_some());
92 assert!(result.unwrap().is_nan());
93 }
94
95 #[rstest]
96 fn test_only_losers() {
97 let avg_loser = AvgLoser {};
98 let pnls = vec![-10.0, -20.0, -30.0];
99 let result = avg_loser.calculate_from_realized_pnls(&pnls);
100 assert!(result.is_some());
101 assert!(approx_eq!(f64, result.unwrap(), -20.0, epsilon = 1e-9));
102 }
103
104 #[rstest]
105 fn test_mixed_pnls() {
106 let avg_loser = AvgLoser {};
107 let pnls = vec![10.0, -20.0, 30.0, -40.0];
108 let result = avg_loser.calculate_from_realized_pnls(&pnls);
109 assert!(result.is_some());
110 assert!(approx_eq!(f64, result.unwrap(), -30.0, epsilon = 1e-9));
111 }
112
113 #[rstest]
114 fn test_zero_excluded() {
115 let avg_loser = AvgLoser {};
116 let pnls = vec![10.0, 0.0, -20.0, -30.0];
117 let result = avg_loser.calculate_from_realized_pnls(&pnls);
118 assert!(result.is_some());
119 assert!(approx_eq!(f64, result.unwrap(), -25.0, epsilon = 1e-9));
121 }
122
123 #[rstest]
124 fn test_single_loser() {
125 let avg_loser = AvgLoser {};
126 let pnls = vec![-10.0];
127 let result = avg_loser.calculate_from_realized_pnls(&pnls);
128 assert!(result.is_some());
129 assert!(approx_eq!(f64, result.unwrap(), -10.0, epsilon = 1e-9));
130 }
131
132 #[rstest]
133 fn test_name() {
134 let avg_loser = AvgLoser {};
135 assert_eq!(avg_loser.name(), "Avg Loser");
136 }
137}