nautilus_analysis/statistics/
loser_avg.rs1use crate::statistic::PortfolioStatistic;
17
18#[repr(C)]
19#[derive(Debug)]
20#[cfg_attr(
21 feature = "python",
22 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
23)]
24pub struct AvgLoser {}
25
26impl PortfolioStatistic for AvgLoser {
27 type Item = f64;
28
29 fn name(&self) -> String {
30 stringify!(AvgLoser).to_string()
31 }
32
33 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
34 if realized_pnls.is_empty() {
35 return Some(0.0);
36 }
37
38 let losers: Vec<f64> = realized_pnls
39 .iter()
40 .filter(|&&pnl| pnl <= 0.0)
41 .copied()
42 .collect();
43
44 if losers.is_empty() {
45 return Some(0.0);
46 }
47
48 let sum: f64 = losers.iter().sum();
49 Some(sum / losers.len() as f64)
50 }
51}
52
53#[cfg(test)]
54mod tests {
55 use nautilus_core::approx_eq;
56 use rstest::rstest;
57
58 use super::*;
59
60 #[rstest]
61 fn test_empty_pnls() {
62 let avg_loser = AvgLoser {};
63 let result = avg_loser.calculate_from_realized_pnls(&[]);
64 assert!(result.is_some());
65 assert!(approx_eq!(f64, result.unwrap(), 0.0, epsilon = 1e-9));
66 }
67
68 #[rstest]
69 fn test_no_losers() {
70 let avg_loser = AvgLoser {};
71 let pnls = vec![10.0, 20.0, 30.0];
72 let result = avg_loser.calculate_from_realized_pnls(&pnls);
73 assert!(result.is_some());
74 assert!(approx_eq!(f64, result.unwrap(), 0.0, epsilon = 1e-9));
75 }
76
77 #[rstest]
78 fn test_only_losers() {
79 let avg_loser = AvgLoser {};
80 let pnls = vec![-10.0, -20.0, -30.0];
81 let result = avg_loser.calculate_from_realized_pnls(&pnls);
82 assert!(result.is_some());
83 assert!(approx_eq!(f64, result.unwrap(), -20.0, epsilon = 1e-9));
84 }
85
86 #[rstest]
87 fn test_mixed_pnls() {
88 let avg_loser = AvgLoser {};
89 let pnls = vec![10.0, -20.0, 30.0, -40.0];
90 let result = avg_loser.calculate_from_realized_pnls(&pnls);
91 assert!(result.is_some());
92 assert!(approx_eq!(f64, result.unwrap(), -30.0, epsilon = 1e-9));
93 }
94
95 #[rstest]
96 fn test_zero_included() {
97 let avg_loser = AvgLoser {};
98 let pnls = vec![10.0, 0.0, -20.0, -30.0];
99 let result = avg_loser.calculate_from_realized_pnls(&pnls);
100 assert!(result.is_some());
101 assert!(approx_eq!(
103 f64,
104 result.unwrap(),
105 -16.666666666666668,
106 epsilon = 1e-9
107 ));
108 }
109
110 #[rstest]
111 fn test_single_loser() {
112 let avg_loser = AvgLoser {};
113 let pnls = vec![-10.0];
114 let result = avg_loser.calculate_from_realized_pnls(&pnls);
115 assert!(result.is_some());
116 assert!(approx_eq!(f64, result.unwrap(), -10.0, epsilon = 1e-9));
117 }
118
119 #[rstest]
120 fn test_name() {
121 let avg_loser = AvgLoser {};
122 assert_eq!(avg_loser.name(), "AvgLoser");
123 }
124}