nautilus_analysis/statistics/
loser_avg.rs1use crate::statistic::PortfolioStatistic;
17
18#[repr(C)]
19#[derive(Debug)]
20#[cfg_attr(
21 feature = "python",
22 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
23)]
24pub struct AvgLoser {}
25
26impl PortfolioStatistic for AvgLoser {
27 type Item = f64;
28
29 fn name(&self) -> String {
30 stringify!(AvgLoser).to_string()
31 }
32
33 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
34 if realized_pnls.is_empty() {
35 return Some(0.0);
36 }
37
38 let losers: Vec<f64> = realized_pnls
39 .iter()
40 .filter(|&&pnl| pnl <= 0.0)
41 .copied()
42 .collect();
43
44 if losers.is_empty() {
45 return Some(0.0);
46 }
47
48 let sum: f64 = losers.iter().sum();
49 Some(sum / losers.len() as f64)
50 }
51}
52
53#[cfg(test)]
54mod tests {
55 use super::*;
56
57 #[test]
58 fn test_empty_pnls() {
59 let avg_loser = AvgLoser {};
60 let result = avg_loser.calculate_from_realized_pnls(&[]);
61 assert!(result.is_some());
62 assert_eq!(result.unwrap(), 0.0);
63 }
64
65 #[test]
66 fn test_no_losers() {
67 let avg_loser = AvgLoser {};
68 let pnls = vec![10.0, 20.0, 30.0];
69 let result = avg_loser.calculate_from_realized_pnls(&pnls);
70 assert!(result.is_some());
71 assert_eq!(result.unwrap(), 0.0);
72 }
73
74 #[test]
75 fn test_only_losers() {
76 let avg_loser = AvgLoser {};
77 let pnls = vec![-10.0, -20.0, -30.0];
78 let result = avg_loser.calculate_from_realized_pnls(&pnls);
79 assert!(result.is_some());
80 assert_eq!(result.unwrap(), -20.0);
81 }
82
83 #[test]
84 fn test_mixed_pnls() {
85 let avg_loser = AvgLoser {};
86 let pnls = vec![10.0, -20.0, 30.0, -40.0];
87 let result = avg_loser.calculate_from_realized_pnls(&pnls);
88 assert!(result.is_some());
89 assert_eq!(result.unwrap(), -30.0);
90 }
91
92 #[test]
93 fn test_zero_included() {
94 let avg_loser = AvgLoser {};
95 let pnls = vec![10.0, 0.0, -20.0, -30.0];
96 let result = avg_loser.calculate_from_realized_pnls(&pnls);
97 assert!(result.is_some());
98 assert_eq!(result.unwrap(), -16.666666666666668);
100 }
101
102 #[test]
103 fn test_single_loser() {
104 let avg_loser = AvgLoser {};
105 let pnls = vec![-10.0];
106 let result = avg_loser.calculate_from_realized_pnls(&pnls);
107 assert!(result.is_some());
108 assert_eq!(result.unwrap(), -10.0);
109 }
110
111 #[test]
112 fn test_name() {
113 let avg_loser = AvgLoser {};
114 assert_eq!(avg_loser.name(), "AvgLoser");
115 }
116}