nautilus_analysis/statistics/
loser_max.rs1use std::fmt::{self, Display};
17
18use nautilus_model::position::Position;
19
20use crate::{Returns, statistic::PortfolioStatistic};
21
22#[repr(C)]
23#[derive(Debug, Clone)]
24#[cfg_attr(
25 feature = "python",
26 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
27)]
28pub struct MaxLoser {}
29
30impl Display for MaxLoser {
31 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
32 write!(f, "Max Loser")
33 }
34}
35
36impl PortfolioStatistic for MaxLoser {
37 type Item = f64;
38
39 fn name(&self) -> String {
40 self.to_string()
41 }
42
43 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
44 if realized_pnls.is_empty() {
45 return Some(0.0);
46 }
47
48 let losers: Vec<f64> = realized_pnls
49 .iter()
50 .filter(|&&pnl| pnl < 0.0)
51 .copied()
52 .collect();
53
54 if losers.is_empty() {
55 return Some(0.0); }
57
58 losers
59 .iter()
60 .min_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
61 .copied()
62 }
63
64 fn calculate_from_returns(&self, _returns: &Returns) -> Option<Self::Item> {
65 None
66 }
67
68 fn calculate_from_positions(&self, _positions: &[Position]) -> Option<Self::Item> {
69 None
70 }
71}
72
73#[cfg(test)]
78mod tests {
79 use nautilus_core::approx_eq;
80 use rstest::rstest;
81
82 use super::*;
83
84 #[rstest]
85 fn test_empty_pnls() {
86 let max_loser = MaxLoser {};
87 let result = max_loser.calculate_from_realized_pnls(&[]);
88 assert!(result.is_some());
89 assert!(approx_eq!(f64, result.unwrap(), 0.0, epsilon = 1e-9));
90 }
91
92 #[rstest]
93 fn test_all_positive() {
94 let max_loser = MaxLoser {};
95 let pnls = vec![10.0, 20.0, 30.0];
96 let result = max_loser.calculate_from_realized_pnls(&pnls);
97 assert!(result.is_some());
98 assert!(approx_eq!(f64, result.unwrap(), 0.0, epsilon = 1e-9));
100 }
101
102 #[rstest]
103 fn test_all_negative() {
104 let max_loser = MaxLoser {};
105 let pnls = vec![-10.0, -20.0, -30.0];
106 let result = max_loser.calculate_from_realized_pnls(&pnls);
107 assert!(result.is_some());
108 assert!(approx_eq!(f64, result.unwrap(), -30.0, epsilon = 1e-9));
109 }
110
111 #[rstest]
112 fn test_mixed_pnls() {
113 let max_loser = MaxLoser {};
114 let pnls = vec![10.0, -20.0, 30.0, -40.0];
115 let result = max_loser.calculate_from_realized_pnls(&pnls);
116 assert!(result.is_some());
117 assert!(approx_eq!(f64, result.unwrap(), -40.0, epsilon = 1e-9));
118 }
119
120 #[rstest]
121 fn test_with_zero() {
122 let max_loser = MaxLoser {};
123 let pnls = vec![10.0, 0.0, -20.0, -30.0];
124 let result = max_loser.calculate_from_realized_pnls(&pnls);
125 assert!(result.is_some());
126 assert!(approx_eq!(f64, result.unwrap(), -30.0, epsilon = 1e-9));
127 }
128
129 #[rstest]
130 fn test_single_value() {
131 let max_loser = MaxLoser {};
132 let pnls = vec![-10.0];
133 let result = max_loser.calculate_from_realized_pnls(&pnls);
134 assert!(result.is_some());
135 assert!(approx_eq!(f64, result.unwrap(), -10.0, epsilon = 1e-9));
136 }
137
138 #[rstest]
139 fn test_name() {
140 let max_loser = MaxLoser {};
141 assert_eq!(max_loser.name(), "Max Loser");
142 }
143}