nautilus_analysis/statistics/
loser_min.rs1use std::fmt::Display;
17
18use nautilus_model::position::Position;
19
20use crate::{Returns, statistic::PortfolioStatistic};
21
22#[repr(C)]
23#[derive(Debug, Clone)]
24#[cfg_attr(
25 feature = "python",
26 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
27)]
28pub struct MinLoser {}
29
30impl Display for MinLoser {
31 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
32 write!(f, "Min Loser")
33 }
34}
35
36impl PortfolioStatistic for MinLoser {
37 type Item = f64;
38
39 fn name(&self) -> String {
40 self.to_string()
41 }
42
43 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
44 if realized_pnls.is_empty() {
45 return Some(f64::NAN);
46 }
47
48 let losers: Vec<f64> = realized_pnls
49 .iter()
50 .filter(|&&pnl| pnl < 0.0)
51 .copied()
52 .collect();
53
54 if losers.is_empty() {
55 return Some(f64::NAN);
56 }
57
58 losers
59 .iter()
60 .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
61 .copied()
62 }
63
64 fn calculate_from_returns(&self, _returns: &Returns) -> Option<Self::Item> {
65 None
66 }
67
68 fn calculate_from_positions(&self, _positions: &[Position]) -> Option<Self::Item> {
69 None
70 }
71}
72
73#[cfg(test)]
74mod tests {
75 use nautilus_core::approx_eq;
76 use rstest::rstest;
77
78 use super::*;
79
80 #[rstest]
81 fn test_empty_pnls() {
82 let min_loser = MinLoser {};
83 let result = min_loser.calculate_from_realized_pnls(&[]);
84 assert!(result.is_some());
85 assert!(result.unwrap().is_nan());
86 }
87
88 #[rstest]
89 fn test_all_positive() {
90 let min_loser = MinLoser {};
91 let pnls = vec![10.0, 20.0, 30.0];
92 let result = min_loser.calculate_from_realized_pnls(&pnls);
93 assert!(result.is_some());
94 assert!(result.unwrap().is_nan());
95 }
96
97 #[rstest]
98 fn test_all_negative() {
99 let min_loser = MinLoser {};
100 let pnls = vec![-10.0, -20.0, -30.0];
101 let result = min_loser.calculate_from_realized_pnls(&pnls);
102 assert!(result.is_some());
103 assert!(approx_eq!(f64, result.unwrap(), -10.0, epsilon = 1e-9));
104 }
105
106 #[rstest]
107 fn test_mixed_pnls() {
108 let min_loser = MinLoser {};
109 let pnls = vec![10.0, -20.0, 30.0, -40.0];
110 let result = min_loser.calculate_from_realized_pnls(&pnls);
111 assert!(result.is_some());
112 assert!(approx_eq!(f64, result.unwrap(), -20.0, epsilon = 1e-9));
113 }
114
115 #[rstest]
116 fn test_with_zero() {
117 let min_loser = MinLoser {};
118 let pnls = vec![10.0, 0.0, -20.0, -30.0];
119 let result = min_loser.calculate_from_realized_pnls(&pnls);
120 assert!(result.is_some());
121 assert!(approx_eq!(f64, result.unwrap(), -20.0, epsilon = 1e-9));
123 }
124
125 #[rstest]
126 fn test_single_negative() {
127 let min_loser = MinLoser {};
128 let pnls = vec![-10.0];
129 let result = min_loser.calculate_from_realized_pnls(&pnls);
130 assert!(result.is_some());
131 assert!(approx_eq!(f64, result.unwrap(), -10.0, epsilon = 1e-9));
132 }
133
134 #[rstest]
135 fn test_name() {
136 let min_loser = MinLoser {};
137 assert_eq!(min_loser.name(), "Min Loser");
138 }
139}