nautilus_analysis/statistics/
win_rate.rs1use std::fmt::Display;
17
18use nautilus_model::position::Position;
19
20use crate::{Returns, statistic::PortfolioStatistic};
21
22#[repr(C)]
38#[derive(Debug, Clone)]
39#[cfg_attr(
40 feature = "python",
41 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
42)]
43pub struct WinRate {}
44
45impl Display for WinRate {
46 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
47 write!(f, "Win Rate")
48 }
49}
50
51impl PortfolioStatistic for WinRate {
52 type Item = f64;
53
54 fn name(&self) -> String {
55 self.to_string()
56 }
57
58 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
59 if realized_pnls.is_empty() {
60 return Some(f64::NAN);
61 }
62
63 let (winners, losers): (Vec<f64>, Vec<f64>) =
64 realized_pnls.iter().partition(|&&pnl| pnl > 0.0);
65
66 let total_trades = winners.len() + losers.len();
67 Some(winners.len() as f64 / total_trades.max(1) as f64)
68 }
69 fn calculate_from_returns(&self, _returns: &Returns) -> Option<Self::Item> {
70 None
71 }
72
73 fn calculate_from_positions(&self, _positions: &[Position]) -> Option<Self::Item> {
74 None
75 }
76}
77
78#[cfg(test)]
79mod tests {
80 use nautilus_core::approx_eq;
81 use rstest::rstest;
82
83 use super::*;
84
85 #[rstest]
86 fn test_empty_pnls() {
87 let win_rate = WinRate {};
88 let result = win_rate.calculate_from_realized_pnls(&[]);
89 assert!(result.is_some());
90 assert!(result.unwrap().is_nan());
91 }
92
93 #[rstest]
94 fn test_all_winning_trades() {
95 let win_rate = WinRate {};
96 let realized_pnls = vec![100.0, 50.0, 200.0];
97 let result = win_rate.calculate_from_realized_pnls(&realized_pnls);
98 assert!(result.is_some());
99 assert!(approx_eq!(f64, result.unwrap(), 1.0, epsilon = 1e-9));
100 }
101
102 #[rstest]
103 fn test_all_losing_trades() {
104 let win_rate = WinRate {};
105 let realized_pnls = vec![-100.0, -50.0, -200.0];
106 let result = win_rate.calculate_from_realized_pnls(&realized_pnls);
107 assert!(result.is_some());
108 assert!(approx_eq!(f64, result.unwrap(), 0.0, epsilon = 1e-9));
109 }
110
111 #[rstest]
112 fn test_mixed_trades() {
113 let win_rate = WinRate {};
114 let realized_pnls = vec![100.0, -50.0, 200.0, -100.0];
115 let result = win_rate.calculate_from_realized_pnls(&realized_pnls);
116 assert!(result.is_some());
117 assert!(approx_eq!(f64, result.unwrap(), 0.5, epsilon = 1e-9));
118 }
119
120 #[rstest]
121 fn test_name() {
122 let win_rate = WinRate {};
123 assert_eq!(win_rate.name(), "Win Rate");
124 }
125}