nautilus_analysis/statistics/
winner_avg.rs1use std::fmt::Display;
17
18use nautilus_model::position::Position;
19
20use crate::{Returns, statistic::PortfolioStatistic};
21
22#[repr(C)]
23#[derive(Debug, Clone)]
24#[cfg_attr(
25 feature = "python",
26 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
27)]
28pub struct AvgWinner {}
29
30impl Display for AvgWinner {
31 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
32 write!(f, "Avg Winner")
33 }
34}
35
36impl PortfolioStatistic for AvgWinner {
37 type Item = f64;
38
39 fn name(&self) -> String {
40 self.to_string()
41 }
42
43 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
44 if realized_pnls.is_empty() {
45 return Some(f64::NAN);
46 }
47
48 let winners: Vec<f64> = realized_pnls
49 .iter()
50 .filter(|&&pnl| pnl > 0.0)
51 .copied()
52 .collect();
53
54 if winners.is_empty() {
55 return Some(f64::NAN);
56 }
57
58 let sum: f64 = winners.iter().sum();
59 Some(sum / winners.len() as f64)
60 }
61
62 fn calculate_from_returns(&self, _returns: &Returns) -> Option<Self::Item> {
63 None
64 }
65
66 fn calculate_from_positions(&self, _positions: &[Position]) -> Option<Self::Item> {
67 None
68 }
69}
70
71#[cfg(test)]
72mod tests {
73 use nautilus_core::approx_eq;
74 use rstest::rstest;
75
76 use super::*;
77
78 #[rstest]
79 fn test_empty_pnls() {
80 let avg_winner = AvgWinner {};
81 let result = avg_winner.calculate_from_realized_pnls(&[]);
82 assert!(result.is_some());
83 assert!(result.unwrap().is_nan());
84 }
85
86 #[rstest]
87 fn test_no_winning_trades() {
88 let avg_winner = AvgWinner {};
89 let realized_pnls = vec![-100.0, -50.0, -200.0];
90 let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
91 assert!(result.is_some());
92 assert!(result.unwrap().is_nan());
93 }
94
95 #[rstest]
96 fn test_all_winning_trades() {
97 let avg_winner = AvgWinner {};
98 let realized_pnls = vec![100.0, 50.0, 200.0];
99 let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
100 assert!(result.is_some());
101 assert!(approx_eq!(
102 f64,
103 result.unwrap(),
104 116.66666666666667,
105 epsilon = 1e-9
106 ));
107 }
108
109 #[rstest]
110 fn test_mixed_trades() {
111 let avg_winner = AvgWinner {};
112 let realized_pnls = vec![100.0, -50.0, 200.0, -100.0];
113 let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
114 assert!(result.is_some());
115 assert!(approx_eq!(f64, result.unwrap(), 150.0, epsilon = 1e-9));
116 }
117
118 #[rstest]
119 fn test_name() {
120 let avg_winner = AvgWinner {};
121 assert_eq!(avg_winner.name(), "Avg Winner");
122 }
123}