nautilus_analysis/statistics/
winner_avg.rs1use crate::statistic::PortfolioStatistic;
17
18#[repr(C)]
19#[derive(Debug)]
20#[cfg_attr(
21 feature = "python",
22 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
23)]
24pub struct AvgWinner {}
25
26impl PortfolioStatistic for AvgWinner {
27 type Item = f64;
28
29 fn name(&self) -> String {
30 stringify!(AvgWinner).to_string()
31 }
32
33 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
34 if realized_pnls.is_empty() {
35 return Some(0.0);
36 }
37
38 let winners: Vec<f64> = realized_pnls
39 .iter()
40 .filter(|&&pnl| pnl > 0.0)
41 .copied()
42 .collect();
43
44 if winners.is_empty() {
45 return Some(0.0);
46 }
47
48 let sum: f64 = winners.iter().sum();
49 Some(sum / winners.len() as f64)
50 }
51}
52
53#[cfg(test)]
54mod tests {
55 use nautilus_core::approx_eq;
56 use rstest::rstest;
57
58 use super::*;
59
60 #[rstest]
61 fn test_empty_pnls() {
62 let avg_winner = AvgWinner {};
63 let result = avg_winner.calculate_from_realized_pnls(&[]);
64 assert!(result.is_some());
65 assert!(approx_eq!(f64, result.unwrap(), 0.0, epsilon = 1e-9));
66 }
67
68 #[rstest]
69 fn test_no_winning_trades() {
70 let avg_winner = AvgWinner {};
71 let realized_pnls = vec![-100.0, -50.0, -200.0];
72 let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
73 assert!(result.is_some());
74 assert!(approx_eq!(f64, result.unwrap(), 0.0, epsilon = 1e-9));
75 }
76
77 #[rstest]
78 fn test_all_winning_trades() {
79 let avg_winner = AvgWinner {};
80 let realized_pnls = vec![100.0, 50.0, 200.0];
81 let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
82 assert!(result.is_some());
83 assert!(approx_eq!(
84 f64,
85 result.unwrap(),
86 116.66666666666667,
87 epsilon = 1e-9
88 ));
89 }
90
91 #[rstest]
92 fn test_mixed_trades() {
93 let avg_winner = AvgWinner {};
94 let realized_pnls = vec![100.0, -50.0, 200.0, -100.0];
95 let result = avg_winner.calculate_from_realized_pnls(&realized_pnls);
96 assert!(result.is_some());
97 assert!(approx_eq!(f64, result.unwrap(), 150.0, epsilon = 1e-9));
98 }
99
100 #[rstest]
101 fn test_name() {
102 let avg_winner = AvgWinner {};
103 assert_eq!(avg_winner.name(), "AvgWinner");
104 }
105}