nautilus_analysis/statistics/
winner_min.rs1use std::fmt::{self, Display};
17
18use nautilus_model::position::Position;
19
20use crate::{Returns, statistic::PortfolioStatistic};
21
22#[repr(C)]
23#[derive(Debug, Clone)]
24#[cfg_attr(
25 feature = "python",
26 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
27)]
28pub struct MinWinner {}
29
30impl Display for MinWinner {
31 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
32 write!(f, "Min Winner")
33 }
34}
35
36impl PortfolioStatistic for MinWinner {
37 type Item = f64;
38
39 fn name(&self) -> String {
40 self.to_string()
41 }
42
43 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
44 if realized_pnls.is_empty() {
45 return Some(0.0);
46 }
47
48 let winners: Vec<f64> = realized_pnls
49 .iter()
50 .filter(|&&pnl| pnl > 0.0)
51 .copied()
52 .collect();
53
54 if winners.is_empty() {
55 return Some(0.0); }
57
58 winners
59 .iter()
60 .min_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
61 .copied()
62 }
63
64 fn calculate_from_returns(&self, _returns: &Returns) -> Option<Self::Item> {
65 None
66 }
67
68 fn calculate_from_positions(&self, _positions: &[Position]) -> Option<Self::Item> {
69 None
70 }
71}
72
73#[cfg(test)]
78mod tests {
79 use nautilus_core::approx_eq;
80 use rstest::rstest;
81
82 use super::*;
83
84 #[rstest]
85 fn test_empty_pnls() {
86 let min_winner = MinWinner {};
87 let result = min_winner.calculate_from_realized_pnls(&[]);
88 assert!(result.is_some());
89 assert!(approx_eq!(f64, result.unwrap(), 0.0, epsilon = 1e-9));
90 }
91
92 #[rstest]
93 fn test_no_winning_trades() {
94 let min_winner = MinWinner {};
95 let realized_pnls = vec![-100.0, -50.0, -200.0];
96 let result = min_winner.calculate_from_realized_pnls(&realized_pnls);
97 assert!(result.is_some());
98 assert!(approx_eq!(f64, result.unwrap(), 0.0, epsilon = 1e-9));
100 }
101
102 #[rstest]
103 fn test_all_winning_trades() {
104 let min_winner = MinWinner {};
105 let realized_pnls = vec![100.0, 50.0, 200.0];
106 let result = min_winner.calculate_from_realized_pnls(&realized_pnls);
107 assert!(result.is_some());
108 assert!(approx_eq!(f64, result.unwrap(), 50.0, epsilon = 1e-9)); }
110
111 #[rstest]
112 fn test_mixed_trades() {
113 let min_winner = MinWinner {};
114 let realized_pnls = vec![100.0, -50.0, 200.0, -100.0];
115 let result = min_winner.calculate_from_realized_pnls(&realized_pnls);
116 assert!(result.is_some());
117 assert!(approx_eq!(f64, result.unwrap(), 100.0, epsilon = 1e-9)); }
119
120 #[rstest]
121 fn test_single_winning_trade() {
122 let min_winner = MinWinner {};
123 let realized_pnls = vec![50.0];
124 let result = min_winner.calculate_from_realized_pnls(&realized_pnls);
125 assert!(result.is_some());
126 assert!(approx_eq!(f64, result.unwrap(), 50.0, epsilon = 1e-9));
127 }
128
129 #[rstest]
130 fn test_name() {
131 let min_winner = MinWinner {};
132 assert_eq!(min_winner.name(), "Min Winner");
133 }
134}