nautilus_core/time.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
// -------------------------------------------------------------------------------------------------
// Copyright (C) 2015-2025 Nautech Systems Pty Ltd. All rights reserved.
// https://nautechsystems.io
//
// Licensed under the GNU Lesser General Public License Version 3.0 (the "License");
// You may not use this file except in compliance with the License.
// You may obtain a copy of the License at https://www.gnu.org/licenses/lgpl-3.0.en.html
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// -------------------------------------------------------------------------------------------------
//! The core `AtomicTime` for real-time and static clocks.
//!
//! This module provides an atomic time abstraction that supports both real-time and static
//! clocks. It ensures thread-safe operations and monotonic time retrieval with nanosecond precision.
use std::{
ops::Deref,
sync::{
atomic::{AtomicBool, AtomicU64, Ordering},
OnceLock,
},
time::{Duration, SystemTime, UNIX_EPOCH},
};
use crate::{
datetime::{NANOSECONDS_IN_MICROSECOND, NANOSECONDS_IN_MILLISECOND, NANOSECONDS_IN_SECOND},
UnixNanos,
};
/// Global atomic time in real-time mode for use across the system.
///
/// This clock operates in real-time mode, where it synchronizes with the system clock
/// or hardware counters, ensuring unique and monotonic timestamps.
pub static ATOMIC_CLOCK_REALTIME: OnceLock<AtomicTime> = OnceLock::new();
/// Global atomic time in static mode for use across the system.
///
/// This clock operates in static mode, where time is manually set and can be controlled
/// programmatically, useful for backtesting or simulation.
pub static ATOMIC_CLOCK_STATIC: OnceLock<AtomicTime> = OnceLock::new();
/// Returns a static reference to the global atomic clock in real-time mode.
///
/// This clock synchronizes with the system time, providing unique, monotonic timestamps
/// across the system.
pub fn get_atomic_clock_realtime() -> &'static AtomicTime {
ATOMIC_CLOCK_REALTIME.get_or_init(AtomicTime::default)
}
/// Returns a static reference to the global atomic clock in static mode.
///
/// This clock allows manual time control and does not synchronize with the system clock.
pub fn get_atomic_clock_static() -> &'static AtomicTime {
ATOMIC_CLOCK_STATIC.get_or_init(|| AtomicTime::new(false, UnixNanos::default()))
}
/// Returns the duration since the UNIX epoch.
///
/// This implementation relies on `SystemTime::now` and provides timestamps with nanosecond
/// precision. It panics if the system time is set before the UNIX epoch.
#[inline(always)]
#[must_use]
pub fn duration_since_unix_epoch() -> Duration {
SystemTime::now()
.duration_since(UNIX_EPOCH)
.expect("Error calling `SystemTime`")
}
/// Returns the current UNIX time in nanoseconds.
#[inline(always)]
#[must_use]
pub fn nanos_since_unix_epoch() -> u64 {
duration_since_unix_epoch().as_nanos() as u64
}
/// Represents an atomic timekeeping structure.
///
/// [`AtomicTime`] can act as a real-time clock or static clock based on its mode.
/// It uses an [`AtomicU64`] to atomically update the value using only immutable
/// references.
///
/// This struct provides thread-safe access to a stored nanosecond time value,
/// useful for when concurrent access to time information is required.
#[repr(C)]
#[derive(Debug)]
pub struct AtomicTime {
/// Indicates whether the clock is operating in real-time mode.
/// When `false`, the clock is in a manual or static mode, allowing for controlled time setting.
pub realtime: AtomicBool,
/// The last recorded time for the clock in UNIX nanoseconds.
/// This value is atomically updated and represents the precise time measurement.
pub timestamp_ns: AtomicU64,
}
impl Deref for AtomicTime {
type Target = AtomicU64;
fn deref(&self) -> &Self::Target {
&self.timestamp_ns
}
}
impl Default for AtomicTime {
/// Creates a new default [`AtomicTime`] instance.
fn default() -> Self {
Self::new(true, UnixNanos::default())
}
}
impl AtomicTime {
/// Creates a new [`AtomicTime`] instance.
///
/// The `realtime` flag will determine whether the atomic time is based off system time.
/// The time will be set to the given UNIX `time` (nanoseconds).
#[must_use]
pub fn new(realtime: bool, time: UnixNanos) -> Self {
Self {
realtime: AtomicBool::new(realtime),
timestamp_ns: AtomicU64::new(time.into()),
}
}
/// Get time in nanoseconds.
///
/// - **Real-time mode**: Returns the current wall clock time since the UNIX epoch,
/// ensuring monotonicity across threads using [`Ordering::SeqCst`].
/// - **Static mode**: Returns the currently stored time, which uses [`Ordering::Relaxed`]
/// and is suitable for single-threaded scenarios where strict synchronization is unnecessary.
#[must_use]
pub fn get_time_ns(&self) -> UnixNanos {
match self.realtime.load(Ordering::Relaxed) {
true => self.time_since_epoch(),
false => UnixNanos::from(self.timestamp_ns.load(Ordering::Relaxed)),
}
}
/// Get time as microseconds.
#[must_use]
pub fn get_time_us(&self) -> u64 {
self.get_time_ns().as_u64() / NANOSECONDS_IN_MICROSECOND
}
/// Get time as milliseconds.
#[must_use]
pub fn get_time_ms(&self) -> u64 {
self.get_time_ns().as_u64() / NANOSECONDS_IN_MILLISECOND
}
/// Get time as seconds.
#[must_use]
pub fn get_time(&self) -> f64 {
self.get_time_ns().as_f64() / (NANOSECONDS_IN_SECOND as f64)
}
/// Sets new time for the clock.
///
/// Intended for single-threaded use, as it relies on [`Ordering::Relaxed`] and
/// does not enforce strict synchronization.
pub fn set_time(&self, time: UnixNanos) {
self.store(time.into(), Ordering::Relaxed);
}
/// Increments the current time by the specified delta and returns the updated value.
///
/// Intended for single-threaded use, as it relies on [`Ordering::Relaxed`] and
/// does not enforce strict synchronization.
pub fn increment_time(&self, delta: u64) -> UnixNanos {
UnixNanos::from(self.fetch_add(delta, Ordering::Relaxed) + delta)
}
/// Stores and returns current time.
///
/// This method uses [`Ordering::SeqCst`] (Sequential Consistency) ordering to ensure that:
/// 1. Timestamps are monotonically increasing and thread-safe.
/// 2. The returned timestamp is never less than the current system time.
/// 3. Each timestamp is at least 1 nanosecond greater than the last stored value.
pub fn time_since_epoch(&self) -> UnixNanos {
// This method guarantees strict consistency but may incur a performance cost under
// high contention due to retries in the `compare_exchange` loop.
let now = nanos_since_unix_epoch();
loop {
let last = self.load(Ordering::SeqCst);
let next = now.max(last + 1);
match self.compare_exchange(last, next, Ordering::SeqCst, Ordering::SeqCst) {
Ok(_) => return UnixNanos::from(next),
Err(_) => continue,
}
}
}
/// Switches the clock to real-time mode.
///
/// Intended for single-threaded use, as it uses [`Ordering::Relaxed`] for updating the mode.
pub fn make_realtime(&self) {
self.realtime.store(true, Ordering::Relaxed);
}
/// Switches the clock to static mode.
///
/// Intended for single-threaded use, as it uses [`Ordering::Relaxed`] for updating the mode.
pub fn make_static(&self) {
self.realtime.store(false, Ordering::Relaxed);
}
}
////////////////////////////////////////////////////////////////////////////////
// Tests
////////////////////////////////////////////////////////////////////////////////
#[cfg(test)]
mod tests {
use std::sync::Arc;
use rstest::*;
use super::*;
#[rstest]
fn test_global_clocks_initialization() {
let realtime_clock = get_atomic_clock_realtime();
assert!(realtime_clock.get_time_ns().as_u64() > 0);
let static_clock = get_atomic_clock_static();
static_clock.set_time(UnixNanos::from(500_000_000)); // 500 ms
assert_eq!(static_clock.get_time_ns().as_u64(), 500_000_000);
}
#[rstest]
fn test_switching_modes() {
let time = AtomicTime::new(true, UnixNanos::default());
// Verify real-time mode
let realtime_ns = time.get_time_ns();
assert!(realtime_ns.as_u64() > 0);
// Switch to static mode
time.make_static();
time.set_time(UnixNanos::from(1_000_000_000)); // 1 second
let static_ns = time.get_time_ns();
assert_eq!(static_ns.as_u64(), 1_000_000_000);
// Switch back to real-time mode
time.make_realtime();
let new_realtime_ns = time.get_time_ns();
assert!(new_realtime_ns.as_u64() > static_ns.as_u64());
}
#[rstest]
fn test_increment_time() {
// Start in static mode
let time = AtomicTime::new(false, UnixNanos::from(0));
let updated_time = time.increment_time(500);
assert_eq!(updated_time.as_u64(), 500);
let updated_time = time.increment_time(1_000);
assert_eq!(updated_time.as_u64(), 1_500);
}
#[cfg(target_os = "linux")]
#[rstest]
fn test_nanos_since_unix_epoch_vs_system_time() {
let unix_nanos = nanos_since_unix_epoch();
let system_ns = duration_since_unix_epoch().as_nanos() as u64;
// Allow for a reasonable delta due to overhead
assert!(
(unix_nanos as i64 - system_ns as i64).abs() < NANOSECONDS_IN_SECOND as i64,
"CLOCK_MONOTONIC_COARSE and SystemTime differ significantly"
);
}
#[cfg(target_os = "linux")]
#[rstest]
fn test_time_since_epoch_monotonicity() {
let clock = get_atomic_clock_realtime();
let mut previous = clock.time_since_epoch();
for _ in 0..1_000_000 {
let current = clock.time_since_epoch();
assert!(current > previous);
previous = current;
}
}
#[rstest]
fn test_time_since_epoch_strictly_increasing_concurrent() {
let time = Arc::new(AtomicTime::new(true, UnixNanos::default()));
let num_threads = 4;
let iterations = 100_000;
let mut handles = Vec::with_capacity(num_threads);
for thread_id in 0..num_threads {
let time_clone = Arc::clone(&time);
let handle = std::thread::spawn(move || {
let mut previous = time_clone.time_since_epoch().as_u64();
for i in 0..iterations {
let current = time_clone.time_since_epoch().as_u64();
assert!(
current > previous,
"Thread {thread_id}: iteration {i}: time did not increase: previous={previous}, current={current}",
);
previous = current;
}
});
handles.push(handle);
}
for handle in handles {
handle.join().unwrap();
}
}
#[rstest]
fn test_duration_since_unix_epoch() {
let time = AtomicTime::new(true, UnixNanos::default());
let duration = Duration::from_nanos(time.get_time_ns().into());
let now = SystemTime::now();
// Check if the duration is close to the actual difference between now and UNIX_EPOCH
let delta = now
.duration_since(UNIX_EPOCH)
.unwrap()
.checked_sub(duration);
assert!(delta.unwrap_or_default() < Duration::from_millis(100));
// Check if the duration is greater than a certain value (assuming the test is run after that point)
assert!(duration > Duration::from_secs(1_650_000_000));
}
#[rstest]
fn test_unix_timestamp_is_monotonic_increasing() {
let time = AtomicTime::new(true, UnixNanos::default());
let result1 = time.get_time();
let result2 = time.get_time();
let result3 = time.get_time();
let result4 = time.get_time();
let result5 = time.get_time();
assert!(result2 >= result1);
assert!(result3 >= result2);
assert!(result4 >= result3);
assert!(result5 >= result4);
assert!(result1 > 1_650_000_000.0);
}
#[rstest]
fn test_unix_timestamp_ms_is_monotonic_increasing() {
let time = AtomicTime::new(true, UnixNanos::default());
let result1 = time.get_time_ms();
let result2 = time.get_time_ms();
let result3 = time.get_time_ms();
let result4 = time.get_time_ms();
let result5 = time.get_time_ms();
assert!(result2 >= result1);
assert!(result3 >= result2);
assert!(result4 >= result3);
assert!(result5 >= result4);
assert!(result1 >= 1_650_000_000_000);
}
#[rstest]
fn test_unix_timestamp_us_is_monotonic_increasing() {
let time = AtomicTime::new(true, UnixNanos::default());
let result1 = time.get_time_us();
let result2 = time.get_time_us();
let result3 = time.get_time_us();
let result4 = time.get_time_us();
let result5 = time.get_time_us();
assert!(result2 >= result1);
assert!(result3 >= result2);
assert!(result4 >= result3);
assert!(result5 >= result4);
assert!(result1 > 1_650_000_000_000_000);
}
#[rstest]
fn test_unix_timestamp_ns_is_monotonic_increasing() {
let time = AtomicTime::new(true, UnixNanos::default());
let result1 = time.get_time_ns();
let result2 = time.get_time_ns();
let result3 = time.get_time_ns();
let result4 = time.get_time_ns();
let result5 = time.get_time_ns();
assert!(result2 >= result1);
assert!(result3 >= result2);
assert!(result4 >= result3);
assert!(result5 >= result4);
assert!(result1.as_u64() > 1_650_000_000_000_000_000);
}
}