1use std::fmt::Display;
17
18use arraydeque::{ArrayDeque, Wrapping};
19use nautilus_core::correctness::{FAILED, check_predicate_true};
20use nautilus_model::{
21 data::{Bar, QuoteTick, TradeTick},
22 enums::PriceType,
23};
24
25use crate::indicator::{Indicator, MovingAverage};
26
27const MAX_PERIOD: usize = 8_192;
28
29#[repr(C)]
31#[derive(Debug)]
32#[cfg_attr(
33 feature = "python",
34 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.indicators")
35)]
36pub struct WeightedMovingAverage {
37 pub period: usize,
39 pub weights: Vec<f64>,
41 pub price_type: PriceType,
43 pub value: f64,
45 pub initialized: bool,
47 pub inputs: ArrayDeque<f64, MAX_PERIOD, Wrapping>,
49}
50
51impl Display for WeightedMovingAverage {
52 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
53 write!(f, "{}({},{:?})", self.name(), self.period, self.weights)
54 }
55}
56
57impl WeightedMovingAverage {
58 #[must_use]
67 pub fn new(period: usize, weights: Vec<f64>, price_type: Option<PriceType>) -> Self {
68 Self::new_checked(period, weights, price_type).expect(FAILED)
69 }
70
71 pub fn new_checked(
80 period: usize,
81 weights: Vec<f64>,
82 price_type: Option<PriceType>,
83 ) -> anyhow::Result<Self> {
84 const EPS: f64 = f64::EPSILON;
85
86 check_predicate_true(period > 0, "`period` must be positive")?;
87
88 check_predicate_true(
89 period == weights.len(),
90 "`period` must equal `weights.len()`",
91 )?;
92
93 let weight_sum: f64 = weights.iter().copied().sum();
94 check_predicate_true(
95 weight_sum > EPS,
96 "`weights` sum must be positive and > f64::EPSILON",
97 )?;
98
99 Ok(Self {
100 period,
101 weights,
102 price_type: price_type.unwrap_or(PriceType::Last),
103 value: 0.0,
104 inputs: ArrayDeque::new(),
105 initialized: false,
106 })
107 }
108
109 fn weighted_average(&self) -> f64 {
110 let n = self.inputs.len();
111 let weights_slice = &self.weights[self.period - n..];
112
113 let mut sum = 0.0;
114 let mut weight_sum = 0.0;
115
116 for (input, weight) in self.inputs.iter().rev().zip(weights_slice.iter().rev()) {
117 sum += input * weight;
118 weight_sum += weight;
119 }
120 sum / weight_sum
121 }
122}
123
124impl Indicator for WeightedMovingAverage {
125 fn name(&self) -> String {
126 stringify!(WeightedMovingAverage).to_string()
127 }
128
129 fn has_inputs(&self) -> bool {
130 !self.inputs.is_empty()
131 }
132
133 fn initialized(&self) -> bool {
134 self.initialized
135 }
136
137 fn handle_quote(&mut self, quote: &QuoteTick) {
138 self.update_raw(quote.extract_price(self.price_type).into());
139 }
140
141 fn handle_trade(&mut self, trade: &TradeTick) {
142 self.update_raw((&trade.price).into());
143 }
144
145 fn handle_bar(&mut self, bar: &Bar) {
146 self.update_raw((&bar.close).into());
147 }
148
149 fn reset(&mut self) {
150 self.value = 0.0;
151 self.initialized = false;
152 self.inputs.clear();
153 }
154}
155
156impl MovingAverage for WeightedMovingAverage {
157 fn value(&self) -> f64 {
158 self.value
159 }
160
161 fn count(&self) -> usize {
162 self.inputs.len()
163 }
164
165 fn update_raw(&mut self, value: f64) {
166 if self.inputs.len() == self.period.min(MAX_PERIOD) {
167 self.inputs.pop_front();
168 }
169 let _ = self.inputs.push_back(value);
170
171 self.value = self.weighted_average();
172 self.initialized = self.count() >= self.period;
173 }
174}
175
176#[cfg(test)]
180mod tests {
181
182 use arraydeque::{ArrayDeque, Wrapping};
183 use rstest::rstest;
184
185 use crate::{
186 average::wma::WeightedMovingAverage,
187 indicator::{Indicator, MovingAverage},
188 stubs::*,
189 };
190
191 #[rstest]
192 fn test_wma_initialized(indicator_wma_10: WeightedMovingAverage) {
193 let display_str = format!("{indicator_wma_10}");
194 assert_eq!(
195 display_str,
196 "WeightedMovingAverage(10,[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])"
197 );
198 assert_eq!(indicator_wma_10.name(), "WeightedMovingAverage");
199 assert!(!indicator_wma_10.has_inputs());
200 assert!(!indicator_wma_10.initialized());
201 }
202
203 #[rstest]
204 #[should_panic]
205 fn test_different_weights_len_and_period_error() {
206 let _ = WeightedMovingAverage::new(10, vec![0.5, 0.5, 0.5], None);
207 }
208
209 #[rstest]
210 fn test_value_with_one_input(mut indicator_wma_10: WeightedMovingAverage) {
211 indicator_wma_10.update_raw(1.0);
212 assert_eq!(indicator_wma_10.value, 1.0);
213 }
214
215 #[rstest]
216 fn test_value_with_two_inputs_equal_weights() {
217 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
218 wma.update_raw(1.0);
219 wma.update_raw(2.0);
220 assert_eq!(wma.value, 1.5);
221 }
222
223 #[rstest]
224 fn test_value_with_four_inputs_equal_weights() {
225 let mut wma = WeightedMovingAverage::new(4, vec![0.25, 0.25, 0.25, 0.25], None);
226 wma.update_raw(1.0);
227 wma.update_raw(2.0);
228 wma.update_raw(3.0);
229 wma.update_raw(4.0);
230 assert_eq!(wma.value, 2.5);
231 }
232
233 #[rstest]
234 fn test_value_with_two_inputs(mut indicator_wma_10: WeightedMovingAverage) {
235 indicator_wma_10.update_raw(1.0);
236 indicator_wma_10.update_raw(2.0);
237 let result = 2.0f64.mul_add(1.0, 1.0 * 0.9) / 1.9;
238 assert_eq!(indicator_wma_10.value, result);
239 }
240
241 #[rstest]
242 fn test_value_with_three_inputs(mut indicator_wma_10: WeightedMovingAverage) {
243 indicator_wma_10.update_raw(1.0);
244 indicator_wma_10.update_raw(2.0);
245 indicator_wma_10.update_raw(3.0);
246 let result = 1.0f64.mul_add(0.8, 3.0f64.mul_add(1.0, 2.0 * 0.9)) / (1.0 + 0.9 + 0.8);
247 assert_eq!(indicator_wma_10.value, result);
248 }
249
250 #[rstest]
251 fn test_value_expected_with_exact_period(mut indicator_wma_10: WeightedMovingAverage) {
252 for i in 1..11 {
253 indicator_wma_10.update_raw(f64::from(i));
254 }
255 assert_eq!(indicator_wma_10.value, 7.0);
256 }
257
258 #[rstest]
259 fn test_value_expected_with_more_inputs(mut indicator_wma_10: WeightedMovingAverage) {
260 for i in 1..=11 {
261 indicator_wma_10.update_raw(f64::from(i));
262 }
263 assert_eq!(indicator_wma_10.value(), 8.000_000_000_000_002);
264 }
265
266 #[rstest]
267 fn test_reset(mut indicator_wma_10: WeightedMovingAverage) {
268 indicator_wma_10.update_raw(1.0);
269 indicator_wma_10.update_raw(2.0);
270 indicator_wma_10.reset();
271 assert_eq!(indicator_wma_10.value, 0.0);
272 assert_eq!(indicator_wma_10.count(), 0);
273 assert!(!indicator_wma_10.initialized);
274 }
275
276 #[rstest]
277 #[should_panic]
278 fn new_panics_on_zero_period() {
279 let _ = WeightedMovingAverage::new(0, vec![1.0], None);
280 }
281
282 #[rstest]
283 fn new_checked_err_on_zero_period() {
284 let res = WeightedMovingAverage::new_checked(0, vec![1.0], None);
285 assert!(res.is_err());
286 }
287
288 #[rstest]
289 #[should_panic]
290 fn new_panics_on_zero_weight_sum() {
291 let _ = WeightedMovingAverage::new(3, vec![0.0, 0.0, 0.0], None);
292 }
293
294 #[rstest]
295 fn new_checked_err_on_zero_weight_sum() {
296 let res = WeightedMovingAverage::new_checked(3, vec![0.0, 0.0, 0.0], None);
297 assert!(res.is_err());
298 }
299
300 #[rstest]
301 #[should_panic]
302 fn new_panics_when_weight_sum_below_epsilon() {
303 let tiny = f64::EPSILON / 10.0;
304 let _ = WeightedMovingAverage::new(3, vec![tiny; 3], None);
305 }
306
307 #[rstest]
308 fn initialized_flag_transitions() {
309 let period = 3;
310 let weights = vec![1.0, 2.0, 3.0];
311 let mut wma = WeightedMovingAverage::new(period, weights, None);
312
313 assert!(!wma.initialized());
314
315 for i in 0..period {
316 wma.update_raw(i as f64);
317 let expected = (i + 1) >= period;
318 assert_eq!(wma.initialized(), expected);
319 }
320 assert!(wma.initialized());
321 }
322
323 #[rstest]
324 fn count_matches_inputs_and_has_inputs() {
325 let mut wma = WeightedMovingAverage::new(4, vec![0.25; 4], None);
326
327 assert_eq!(wma.count(), 0);
328 assert!(!wma.has_inputs());
329
330 wma.update_raw(1.0);
331 wma.update_raw(2.0);
332 assert_eq!(wma.count(), 2);
333 assert!(wma.has_inputs());
334 }
335
336 #[rstest]
337 fn reset_restores_pristine_state() {
338 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
339 wma.update_raw(1.0);
340 wma.update_raw(2.0);
341 assert!(wma.initialized());
342
343 wma.reset();
344
345 assert_eq!(wma.count(), 0);
346 assert_eq!(wma.value(), 0.0);
347 assert!(!wma.initialized());
348 assert!(!wma.has_inputs());
349 }
350
351 #[rstest]
352 fn weighted_average_with_non_uniform_weights() {
353 let mut wma = WeightedMovingAverage::new(3, vec![1.0, 2.0, 3.0], None);
354 wma.update_raw(10.0);
355 wma.update_raw(20.0);
356 wma.update_raw(30.0);
357 let expected = 23.333_333_333_333_332;
358 let tol = f64::EPSILON.sqrt();
359 assert!(
360 (wma.value() - expected).abs() < tol,
361 "value = {}, expected ≈ {}",
362 wma.value(),
363 expected
364 );
365 }
366
367 #[rstest]
368 fn test_window_never_exceeds_period(mut indicator_wma_10: WeightedMovingAverage) {
369 for i in 0..100 {
370 indicator_wma_10.update_raw(f64::from(i));
371 assert!(indicator_wma_10.count() <= indicator_wma_10.period);
372 }
373 }
374
375 #[rstest]
376 fn test_negative_weights_positive_sum() {
377 let period = 3;
378 let weights = vec![-1.0, 2.0, 2.0];
379 let mut wma = WeightedMovingAverage::new(period, weights, None);
380 wma.update_raw(1.0);
381 wma.update_raw(2.0);
382 wma.update_raw(3.0);
383
384 let expected = 2.0f64.mul_add(3.0, 2.0f64.mul_add(2.0, -1.0)) / 3.0;
385 let tol = f64::EPSILON.sqrt();
386 assert!((wma.value() - expected).abs() < tol);
387 }
388
389 #[rstest]
390 fn test_nan_input_propagates() {
391 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
392 wma.update_raw(1.0);
393 wma.update_raw(f64::NAN);
394
395 assert!(wma.value().is_nan());
396 }
397
398 #[rstest]
399 #[should_panic]
400 fn new_panics_when_weight_sum_equals_epsilon() {
401 let eps_third = f64::EPSILON / 3.0;
402 let _ = WeightedMovingAverage::new(3, vec![eps_third; 3], None);
403 }
404
405 #[rstest]
406 fn new_checked_err_when_weight_sum_equals_epsilon() {
407 let eps_third = f64::EPSILON / 3.0;
408 let res = WeightedMovingAverage::new_checked(3, vec![eps_third; 3], None);
409 assert!(res.is_err());
410 }
411
412 #[rstest]
413 fn new_checked_err_when_weight_sum_below_epsilon() {
414 let w = f64::EPSILON * 0.9;
415 let res = WeightedMovingAverage::new_checked(1, vec![w], None);
416 assert!(res.is_err());
417 }
418
419 #[rstest]
420 fn new_ok_when_weight_sum_above_epsilon() {
421 let w = f64::EPSILON * 1.1;
422 let res = WeightedMovingAverage::new_checked(1, vec![w], None);
423 assert!(res.is_ok());
424 }
425
426 #[rstest]
427 #[should_panic]
428 fn new_panics_on_cancelled_weights_sum() {
429 let _ = WeightedMovingAverage::new(3, vec![1.0, -1.0, 0.0], None);
430 }
431
432 #[rstest]
433 fn new_checked_err_on_cancelled_weights_sum() {
434 let res = WeightedMovingAverage::new_checked(3, vec![1.0, -1.0, 0.0], None);
435 assert!(res.is_err());
436 }
437
438 #[rstest]
439 fn single_period_returns_latest_input() {
440 let mut wma = WeightedMovingAverage::new(1, vec![1.0], None);
441 for i in 0..5 {
442 let v = f64::from(i);
443 wma.update_raw(v);
444 assert_eq!(wma.value(), v);
445 }
446 }
447
448 #[rstest]
449 fn value_with_sparse_weights() {
450 let mut wma = WeightedMovingAverage::new(3, vec![0.0, 1.0, 0.0], None);
451 wma.update_raw(10.0);
452 wma.update_raw(20.0);
453 wma.update_raw(30.0);
454 assert_eq!(wma.value(), 20.0);
455 }
456
457 #[rstest]
458 fn warm_up_len1() {
459 let mut wma = WeightedMovingAverage::new(4, vec![1.0, 2.0, 3.0, 4.0], None);
460 wma.update_raw(42.0);
461 assert_eq!(wma.value(), 42.0);
462 }
463
464 #[rstest]
465 fn warm_up_len2() {
466 let mut wma = WeightedMovingAverage::new(4, vec![1.0, 2.0, 3.0, 4.0], None);
467 wma.update_raw(10.0);
468 wma.update_raw(20.0);
469 let expected = 20.0f64.mul_add(4.0, 10.0 * 3.0) / (4.0 + 3.0);
470 assert_eq!(wma.value(), expected);
471 }
472
473 #[rstest]
474 fn warm_up_len3() {
475 let mut wma = WeightedMovingAverage::new(4, vec![1.0, 2.0, 3.0, 4.0], None);
476 wma.update_raw(1.0);
477 wma.update_raw(2.0);
478 wma.update_raw(3.0);
479 let expected = 1.0f64.mul_add(2.0, 3.0f64.mul_add(4.0, 2.0 * 3.0)) / (4.0 + 3.0 + 2.0);
480 assert_eq!(wma.value(), expected);
481 }
482
483 #[rstest]
484 fn input_window_contains_latest_period() {
485 let period = 3;
486 let mut wma = WeightedMovingAverage::new(period, vec![1.0; period], None);
487 let vals = [1.0, 2.0, 3.0, 4.0];
488 for v in vals {
489 wma.update_raw(v);
490 }
491 let expected: Vec<f64> = vals[vals.len() - period..].to_vec();
492 assert_eq!(wma.inputs.iter().copied().collect::<Vec<_>>(), expected);
493 }
494
495 #[rstest]
496 fn window_slides_correctly() {
497 let mut wma = WeightedMovingAverage::new(2, vec![1.0; 2], None);
498 wma.update_raw(1.0);
499 assert_eq!(wma.inputs.iter().copied().collect::<Vec<_>>(), vec![1.0]);
500 wma.update_raw(2.0);
501 assert_eq!(
502 wma.inputs.iter().copied().collect::<Vec<_>>(),
503 vec![1.0, 2.0]
504 );
505 wma.update_raw(3.0);
506 assert_eq!(
507 wma.inputs.iter().copied().collect::<Vec<_>>(),
508 vec![2.0, 3.0]
509 );
510 }
511
512 #[rstest]
513 fn window_len_constant_after_many_updates() {
514 let period = 5;
515 let mut wma = WeightedMovingAverage::new(period, vec![1.0; period], None);
516 for i in 0..100 {
517 wma.update_raw(i as f64);
518 assert_eq!(wma.inputs.len(), period.min(i + 1));
519 }
520 }
521
522 #[rstest]
523 fn arraydeque_wraps_when_full() {
524 const CAP: usize = 3;
525 let mut buf: ArrayDeque<usize, CAP, Wrapping> = ArrayDeque::new();
526 for i in 0..=CAP {
527 let _ = buf.push_back(i);
528 }
529 assert_eq!(buf.len(), CAP);
530 assert_eq!(buf.front().copied(), Some(1));
531 assert_eq!(buf.back().copied(), Some(3));
532 }
533
534 #[rstest]
535 fn arraydeque_sliding_window_with_pop() {
536 const CAP: usize = 3;
537 let mut buf: ArrayDeque<usize, CAP, Wrapping> = ArrayDeque::new();
538 for i in 0..10 {
539 if buf.len() == CAP {
540 buf.pop_front();
541 }
542 let _ = buf.push_back(i);
543 assert!(buf.len() <= CAP);
544 }
545 assert_eq!(buf.len(), CAP);
546 }
547
548 #[rstest]
549 fn new_ok_with_infinite_weight() {
550 let res = WeightedMovingAverage::new_checked(2, vec![f64::INFINITY, 1.0], None);
551 assert!(res.is_ok());
552 }
553
554 #[rstest]
555 #[should_panic]
556 fn new_panics_on_nan_weight() {
557 let _ = WeightedMovingAverage::new(2, vec![f64::NAN, 1.0], None);
558 }
559
560 #[rstest]
561 #[should_panic]
562 fn new_panics_on_empty_weights() {
563 let _ = WeightedMovingAverage::new(1, Vec::new(), None);
564 }
565
566 #[rstest]
567 fn inf_input_propagates() {
568 let mut wma = WeightedMovingAverage::new(2, vec![0.5, 0.5], None);
569 wma.update_raw(1.0);
570 wma.update_raw(f64::INFINITY);
571 assert!(wma.value().is_infinite());
572 }
573
574 #[rstest]
575 fn warm_up_with_front_zero_weights() {
576 let mut wma = WeightedMovingAverage::new(4, vec![0.0, 0.0, 1.0, 1.0], None);
577 wma.update_raw(10.0);
578 wma.update_raw(20.0);
579 let expected = 20.0f64.mul_add(1.0, 10.0 * 1.0) / 2.0;
580 assert_eq!(wma.value(), expected);
581 }
582}