nautilus_serialization/arrow/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// -------------------------------------------------------------------------------------------------
//  Copyright (C) 2015-2025 Nautech Systems Pty Ltd. All rights reserved.
//  https://nautechsystems.io
//
//  Licensed under the GNU Lesser General Public License Version 3.0 (the "License");
//  You may not use this file except in compliance with the License.
//  You may obtain a copy of the License at https://www.gnu.org/licenses/lgpl-3.0.en.html
//
//  Unless required by applicable law or agreed to in writing, software
//  distributed under the License is distributed on an "AS IS" BASIS,
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  See the License for the specific language governing permissions and
//  limitations under the License.
// -------------------------------------------------------------------------------------------------

//! Defines the Apache Arrow schema for Nautilus types.

pub mod bar;
pub mod delta;
pub mod depth;
pub mod quote;
pub mod trade;

use std::{
    collections::HashMap,
    io::{self, Write},
};

use arrow::{
    array::{Array, ArrayRef},
    datatypes::{DataType, Schema},
    error::ArrowError,
    ipc::writer::StreamWriter,
    record_batch::RecordBatch,
};
use nautilus_model::data::{Bar, Data, OrderBookDelta, OrderBookDepth10, QuoteTick, TradeTick};
use pyo3::prelude::*;

// Define metadata key constants constants
const KEY_BAR_TYPE: &str = "bar_type";
const KEY_INSTRUMENT_ID: &str = "instrument_id";
const KEY_PRICE_PRECISION: &str = "price_precision";
const KEY_SIZE_PRECISION: &str = "size_precision";

#[derive(thiserror::Error, Debug)]
pub enum DataStreamingError {
    #[error("Arrow error: {0}")]
    ArrowError(#[from] arrow::error::ArrowError),
    #[error("I/O error: {0}")]
    IoError(#[from] io::Error),
    #[error("Python error: {0}")]
    PythonError(#[from] PyErr),
}

#[derive(thiserror::Error, Debug)]
pub enum EncodingError {
    #[error("Empty data")]
    EmptyData,
    #[error("Missing metadata key: `{0}`")]
    MissingMetadata(&'static str),
    #[error("Missing data column: `{0}` at index {1}")]
    MissingColumn(&'static str, usize),
    #[error("Error parsing `{0}`: {1}")]
    ParseError(&'static str, String),
    #[error("Invalid column type `{0}` at index {1}: expected {2}, found {3}")]
    InvalidColumnType(&'static str, usize, DataType, DataType),
    #[error("Arrow error: {0}")]
    ArrowError(#[from] arrow::error::ArrowError),
}

pub trait ArrowSchemaProvider {
    fn get_schema(metadata: Option<HashMap<String, String>>) -> Schema;

    #[must_use]
    fn get_schema_map() -> HashMap<String, String> {
        let schema = Self::get_schema(None);
        let mut map = HashMap::new();
        for field in schema.fields() {
            let name = field.name().to_string();
            let data_type = format!("{:?}", field.data_type());
            map.insert(name, data_type);
        }
        map
    }
}

pub trait EncodeToRecordBatch
where
    Self: Sized + ArrowSchemaProvider,
{
    fn encode_batch(
        metadata: &HashMap<String, String>,
        data: &[Self],
    ) -> Result<RecordBatch, ArrowError>;

    fn metadata(&self) -> HashMap<String, String>;
    fn chunk_metadata(chunk: &[Self]) -> HashMap<String, String> {
        chunk
            .first()
            .map(|elem| elem.metadata())
            .expect("Chunk must have atleast one element to encode")
    }
}

pub trait DecodeFromRecordBatch
where
    Self: Sized + Into<Data> + ArrowSchemaProvider,
{
    fn decode_batch(
        metadata: &HashMap<String, String>,
        record_batch: RecordBatch,
    ) -> Result<Vec<Self>, EncodingError>;
}

pub trait DecodeDataFromRecordBatch
where
    Self: Sized + Into<Data> + ArrowSchemaProvider,
{
    fn decode_data_batch(
        metadata: &HashMap<String, String>,
        record_batch: RecordBatch,
    ) -> Result<Vec<Data>, EncodingError>;
}

pub trait WriteStream {
    fn write(&mut self, record_batch: &RecordBatch) -> Result<(), DataStreamingError>;
}

impl<T: EncodeToRecordBatch + Write> WriteStream for T {
    fn write(&mut self, record_batch: &RecordBatch) -> Result<(), DataStreamingError> {
        let mut writer = StreamWriter::try_new(self, &record_batch.schema())?;
        writer.write(record_batch)?;
        writer.finish()?;
        Ok(())
    }
}

pub fn extract_column<'a, T: Array + 'static>(
    cols: &'a [ArrayRef],
    column_key: &'static str,
    column_index: usize,
    expected_type: DataType,
) -> Result<&'a T, EncodingError> {
    let column_values = cols
        .get(column_index)
        .ok_or(EncodingError::MissingColumn(column_key, column_index))?;
    let downcasted_values =
        column_values
            .as_any()
            .downcast_ref::<T>()
            .ok_or(EncodingError::InvalidColumnType(
                column_key,
                column_index,
                expected_type,
                column_values.data_type().clone(),
            ))?;
    Ok(downcasted_values)
}

pub fn order_book_deltas_to_arrow_record_batch_bytes(
    data: Vec<OrderBookDelta>,
) -> Result<RecordBatch, EncodingError> {
    if data.is_empty() {
        return Err(EncodingError::EmptyData);
    }

    // Extract metadata from chunk
    let metadata = OrderBookDelta::chunk_metadata(&data);
    OrderBookDelta::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
}

pub fn order_book_depth10_to_arrow_record_batch_bytes(
    data: Vec<OrderBookDepth10>,
) -> Result<RecordBatch, EncodingError> {
    if data.is_empty() {
        return Err(EncodingError::EmptyData);
    }

    // Take first element and extract metadata
    // SAFETY: Unwrap safe as already checked that `data` not empty
    let first = data.first().unwrap();
    let metadata = first.metadata();
    OrderBookDepth10::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
}

pub fn quote_ticks_to_arrow_record_batch_bytes(
    data: Vec<QuoteTick>,
) -> Result<RecordBatch, EncodingError> {
    if data.is_empty() {
        return Err(EncodingError::EmptyData);
    }

    // Take first element and extract metadata
    // SAFETY: Unwrap safe as already checked that `data` not empty
    let first = data.first().unwrap();
    let metadata = first.metadata();
    QuoteTick::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
}

pub fn trade_ticks_to_arrow_record_batch_bytes(
    data: Vec<TradeTick>,
) -> Result<RecordBatch, EncodingError> {
    if data.is_empty() {
        return Err(EncodingError::EmptyData);
    }

    // Take first element and extract metadata
    // SAFETY: Unwrap safe as already checked that `data` not empty
    let first = data.first().unwrap();
    let metadata = first.metadata();
    TradeTick::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
}

pub fn bars_to_arrow_record_batch_bytes(data: Vec<Bar>) -> Result<RecordBatch, EncodingError> {
    if data.is_empty() {
        return Err(EncodingError::EmptyData);
    }

    // Take first element and extract metadata
    // SAFETY: Unwrap safe as already checked that `data` not empty
    let first = data.first().unwrap();
    let metadata = first.metadata();
    Bar::encode_batch(&metadata, &data).map_err(EncodingError::ArrowError)
}