Skip to main content
Version: latest

Custom Data

Due to the modular nature of the Nautilus design, it is possible to set up systems with very flexible data streams, including custom user-defined data types. This guide covers some possible use cases for this functionality.

It's possible to create custom data types within the Nautilus system. First you will need to define your data by subclassing from Data.

info

As Data holds no state, it is not strictly necessary to call super().__init__().

from nautilus_trader.core import Data


class MyDataPoint(Data):
"""
This is an example of a user-defined data class, inheriting from the base class `Data`.

The fields `label`, `x`, `y`, and `z` in this class are examples of arbitrary user data.
"""

def __init__(
self,
label: str,
x: int,
y: int,
z: int,
ts_event: int,
ts_init: int,
) -> None:
self.label = label
self.x = x
self.y = y
self.z = z
self._ts_event = ts_event
self._ts_init = ts_init

@property
def ts_event(self) -> int:
"""
UNIX timestamp (nanoseconds) when the data event occurred.

Returns
-------
int

"""
return self._ts_event

@property
def ts_init(self) -> int:
"""
UNIX timestamp (nanoseconds) when the object was initialized.

Returns
-------
int

"""
return self._ts_init

The Data abstract base class acts as a contract within the system and requires two properties for all types of data: ts_event and ts_init. These represent the UNIX nanosecond timestamps for when the event occurred and when the object was initialized, respectively.

The recommended approach to satisfy the contract is to assign ts_event and ts_init to backing fields, and then implement the @property for each as shown above (for completeness, the docstrings are copied from the Data base class).

info

These timestamps enable Nautilus to correctly order data streams for backtests using monotonically increasing ts_init UNIX nanoseconds.

We can now work with this data type for backtesting and live trading. For instance, we could now create an adapter which is able to parse and create objects of this type - and send them back to the DataEngine for consumption by subscribers.

You can subscribe to these custom data types within your actor/strategy in the following way:

self.subscribe_data(
data_type=DataType(MyDataPoint, metadata={"some_optional_category": 1}),
client_id=ClientId("MY_ADAPTER"),
)

This will result in your actor/strategy passing these received MyDataPoint objects to your on_data method. You will need to check the type, as this method acts as a flexible handler for all custom data.

def on_data(self, data: Data) -> None:
# First check the type of data
if isinstance(data, MyDataPoint):
# Do something with the data

Publishing and receiving signal data

Here is an example of publishing and receiving signal data using the MessageBus from an actor or strategy. A signal is an automatically generated custom data identified by a name containing only one value of a basic type (str, float, int, bool or bytes).

self.publish_signal("signal_name", value, ts_event)
self.subscribe_signal("signal_name")

def on_signal(self, signal):
print("Signal", data)

Option Greeks example

This example demonstrates how to create a custom data type for option Greeks, specifically the delta. By following these steps, you can create custom data types, subscribe to them, publish them, and store them in the Cache or ParquetDataCatalog for efficient retrieval.

import msgspec
from nautilus_trader.core import Data
from nautilus_trader.model import DataType
from nautilus_trader.serialization.base import register_serializable_type
from nautilus_trader.serialization.arrow.serializer import register_arrow
import pyarrow as pa

from nautilus_trader.model import InstrumentId
from nautilus_trader.core.datetime import dt_to_unix_nanos, unix_nanos_to_dt, format_iso8601


def unix_nanos_to_str(unix_nanos):
return format_iso8601(unix_nanos_to_dt(unix_nanos))


class GreeksData(Data):
def __init__(
self, instrument_id: InstrumentId = InstrumentId.from_str("ES.GLBX"),
ts_event: int = 0,
ts_init: int = 0,
delta: float = 0.0,
) -> None:
self.instrument_id = instrument_id
self._ts_event = ts_event
self._ts_init = ts_init
self.delta = delta

def __repr__(self):
return (f"GreeksData(ts_init={unix_nanos_to_str(self._ts_init)}, instrument_id={self.instrument_id}, delta={self.delta:.2f})")

@property
def ts_event(self):
return self._ts_event

@property
def ts_init(self):
return self._ts_init

def to_dict(self):
return {
"instrument_id": self.instrument_id.value,
"ts_event": self._ts_event,
"ts_init": self._ts_init,
"delta": self.delta,
}

@classmethod
def from_dict(cls, data: dict):
return GreeksData(InstrumentId.from_str(data["instrument_id"]), data["ts_event"], data["ts_init"], data["delta"])

def to_bytes(self):
return msgspec.msgpack.encode(self.to_dict())

@classmethod
def from_bytes(cls, data: bytes):
return cls.from_dict(msgspec.msgpack.decode(data))

def to_catalog(self):
return pa.RecordBatch.from_pylist([self.to_dict()], schema=GreeksData.schema())

@classmethod
def from_catalog(cls, table: pa.Table):
return [GreeksData.from_dict(d) for d in table.to_pylist()]

@classmethod
def schema(cls):
return pa.schema(
{
"instrument_id": pa.string(),
"ts_event": pa.int64(),
"ts_init": pa.int64(),
"delta": pa.float64(),
}
)

Publishing and receiving data

Here is an example of publishing and receiving data using the MessageBus from an actor or strategy:

register_serializable_type(GreeksData, GreeksData.to_dict, GreeksData.from_dict)

def publish_greeks(self, greeks_data: GreeksData):
self.publish_data(DataType(GreeksData), greeks_data)

def subscribe_to_greeks(self):
self.subscribe_data(DataType(GreeksData))

def on_data(self, data):
if isinstance(GreeksData):
print("Data", data)

Writing and reading data using the cache

Here is an example of writing and reading data using the Cache from an actor or strategy:

def greeks_key(instrument_id: InstrumentId):
return f"{instrument_id}_GREEKS"

def cache_greeks(self, greeks_data: GreeksData):
self.cache.add(greeks_key(greeks_data.instrument_id), greeks_data.to_bytes())

def greeks_from_cache(self, instrument_id: InstrumentId):
return GreeksData.from_bytes(self.cache.get(greeks_key(instrument_id)))

Writing and reading data using a catalog

For streaming custom data to feather files or writing it to parquet files in a catalog (register_arrow needs to be used):

register_arrow(GreeksData, GreeksData.schema(), GreeksData.to_catalog, GreeksData.from_catalog)

from nautilus_trader.persistence.catalog import ParquetDataCatalog
catalog = ParquetDataCatalog('.')

catalog.write_data([GreeksData()])

Creating a custom data class automatically

The @customdataclass decorator enables the creation of a custom data class with default implementations for all the features described above.

Each method can also be overridden if needed. Here is an example of its usage:

from nautilus_trader.model.custom import customdataclass


@customdataclass
class GreeksTestData(Data):
instrument_id: InstrumentId = InstrumentId.from_str("ES.GLBX")
delta: float = 0.0


GreeksTestData(
instrument_id=InstrumentId.from_str("CL.GLBX"),
delta=1000.0,
ts_event=1,
ts_init=2,
)

Custom data type stub

To enhance development convenience and improve code suggestions in your IDE, you can create a .pyi stub file with the proper constructor signature for your custom data types as well as type hints for attributes. This is particularly useful when the constructor is dynamically generated at runtime, as it allows the IDE to recognize and provide suggestions for the class's methods and attributes.

For instance, if you have a custom data class defined in greeks.py, you can create a corresponding greeks.pyi file with the following constructor signature:

from nautilus_trader.core import Data
from nautilus_trader.model import InstrumentId


class GreeksData(Data):
instrument_id: InstrumentId
delta: float

def __init__(
self,
ts_event: int = 0,
ts_init: int = 0,
instrument_id: InstrumentId = InstrumentId.from_str("ES.GLBX"),
delta: float = 0.0,
) -> GreeksData: ...