nautilus_analysis/statistics/
loser_min.rs1use crate::statistic::PortfolioStatistic;
17
18#[repr(C)]
19#[derive(Debug)]
20#[cfg_attr(
21 feature = "python",
22 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
23)]
24pub struct MinLoser {}
25
26impl PortfolioStatistic for MinLoser {
27 type Item = f64;
28
29 fn name(&self) -> String {
30 stringify!(MinLoser).to_string()
31 }
32
33 fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
34 if realized_pnls.is_empty() {
35 return Some(0.0);
36 }
37
38 realized_pnls
39 .iter()
40 .filter(|&&pnl| pnl < 0.0)
41 .max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
42 .copied()
43 }
44}
45
46#[cfg(test)]
47mod tests {
48 use super::*;
49
50 #[test]
51 fn test_empty_pnls() {
52 let min_loser = MinLoser {};
53 let result = min_loser.calculate_from_realized_pnls(&[]);
54 assert!(result.is_some());
55 assert_eq!(result.unwrap(), 0.0);
56 }
57
58 #[test]
59 fn test_all_positive() {
60 let min_loser = MinLoser {};
61 let pnls = vec![10.0, 20.0, 30.0];
62 let result = min_loser.calculate_from_realized_pnls(&pnls);
63 assert!(result.is_none());
64 }
65
66 #[test]
67 fn test_all_negative() {
68 let min_loser = MinLoser {};
69 let pnls = vec![-10.0, -20.0, -30.0];
70 let result = min_loser.calculate_from_realized_pnls(&pnls);
71 assert!(result.is_some());
72 assert_eq!(result.unwrap(), -10.0);
73 }
74
75 #[test]
76 fn test_mixed_pnls() {
77 let min_loser = MinLoser {};
78 let pnls = vec![10.0, -20.0, 30.0, -40.0];
79 let result = min_loser.calculate_from_realized_pnls(&pnls);
80 assert!(result.is_some());
81 assert_eq!(result.unwrap(), -20.0);
82 }
83
84 #[test]
85 fn test_with_zero() {
86 let min_loser = MinLoser {};
87 let pnls = vec![10.0, 0.0, -20.0, -30.0];
88 let result = min_loser.calculate_from_realized_pnls(&pnls);
89 assert!(result.is_some());
90 assert_eq!(result.unwrap(), -20.0);
91 }
92
93 #[test]
94 fn test_single_negative() {
95 let min_loser = MinLoser {};
96 let pnls = vec![-10.0];
97 let result = min_loser.calculate_from_realized_pnls(&pnls);
98 assert!(result.is_some());
99 assert_eq!(result.unwrap(), -10.0);
100 }
101
102 #[test]
103 fn test_name() {
104 let min_loser = MinLoser {};
105 assert_eq!(min_loser.name(), "MinLoser");
106 }
107}