nautilus_analysis/statistics/
loser_min.rsuse crate::statistic::PortfolioStatistic;
#[repr(C)]
#[derive(Debug)]
#[cfg_attr(
feature = "python",
pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.analysis")
)]
pub struct MinLoser {}
impl PortfolioStatistic for MinLoser {
type Item = f64;
fn name(&self) -> String {
stringify!(MinLoser).to_string()
}
fn calculate_from_realized_pnls(&self, realized_pnls: &[f64]) -> Option<Self::Item> {
if realized_pnls.is_empty() {
return Some(0.0);
}
realized_pnls
.iter()
.filter(|&&pnl| pnl < 0.0)
.max_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
.copied()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_empty_pnls() {
let min_loser = MinLoser {};
let result = min_loser.calculate_from_realized_pnls(&[]);
assert!(result.is_some());
assert_eq!(result.unwrap(), 0.0);
}
#[test]
fn test_all_positive() {
let min_loser = MinLoser {};
let pnls = vec![10.0, 20.0, 30.0];
let result = min_loser.calculate_from_realized_pnls(&pnls);
assert!(result.is_none());
}
#[test]
fn test_all_negative() {
let min_loser = MinLoser {};
let pnls = vec![-10.0, -20.0, -30.0];
let result = min_loser.calculate_from_realized_pnls(&pnls);
assert!(result.is_some());
assert_eq!(result.unwrap(), -10.0);
}
#[test]
fn test_mixed_pnls() {
let min_loser = MinLoser {};
let pnls = vec![10.0, -20.0, 30.0, -40.0];
let result = min_loser.calculate_from_realized_pnls(&pnls);
assert!(result.is_some());
assert_eq!(result.unwrap(), -20.0);
}
#[test]
fn test_with_zero() {
let min_loser = MinLoser {};
let pnls = vec![10.0, 0.0, -20.0, -30.0];
let result = min_loser.calculate_from_realized_pnls(&pnls);
assert!(result.is_some());
assert_eq!(result.unwrap(), -20.0);
}
#[test]
fn test_single_negative() {
let min_loser = MinLoser {};
let pnls = vec![-10.0];
let result = min_loser.calculate_from_realized_pnls(&pnls);
assert!(result.is_some());
assert_eq!(result.unwrap(), -10.0);
}
#[test]
fn test_name() {
let min_loser = MinLoser {};
assert_eq!(min_loser.name(), "MinLoser");
}
}