nautilus_indicators/average/
lr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// -------------------------------------------------------------------------------------------------
//  Copyright (C) 2015-2024 Nautech Systems Pty Ltd. All rights reserved.
//  https://nautechsystems.io
//
//  Licensed under the GNU Lesser General Public License Version 3.0 (the "License");
//   You may not use this file except in compliance with the License.
//  You may obtain a copy of the License at https://www.gnu.org/licenses/lgpl-3.0.en.html
//
//  Unless required by applicable law or agreed to in writing, software
//  distributed under the License is distributed on an "AS IS" BASIS,
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  See the License for the specific language governing permissions and
//  limitations under the License.
// -------------------------------------------------------------------------------------------------

use std::fmt::{Debug, Display};

use nautilus_model::data::Bar;

use crate::indicator::Indicator;

#[repr(C)]
#[derive(Debug)]
#[cfg_attr(
    feature = "python",
    pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.indicators")
)]
pub struct LinearRegression {
    pub period: usize,
    pub slope: f64,
    pub intercept: f64,
    pub degree: f64,
    pub cfo: f64,
    pub r2: f64,
    pub value: f64,
    pub initialized: bool,
    has_inputs: bool,
    inputs: Vec<f64>,
}

impl Display for LinearRegression {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}({})", self.name(), self.period,)
    }
}

impl Indicator for LinearRegression {
    fn name(&self) -> String {
        stringify!(LinearRegression).to_string()
    }

    fn has_inputs(&self) -> bool {
        self.has_inputs
    }

    fn initialized(&self) -> bool {
        self.initialized
    }

    fn handle_bar(&mut self, bar: &Bar) {
        self.update_raw((&bar.close).into());
    }

    fn reset(&mut self) {
        self.slope = 0.0;
        self.intercept = 0.0;
        self.degree = 0.0;
        self.cfo = 0.0;
        self.r2 = 0.0;
        self.inputs.clear();
        self.value = 0.0;
        self.has_inputs = false;
        self.initialized = false;
    }
}

impl LinearRegression {
    /// Creates a new [`LinearRegression`] instance.
    #[must_use]
    pub fn new(period: usize) -> Self {
        Self {
            period,
            slope: 0.0,
            intercept: 0.0,
            degree: 0.0,
            cfo: 0.0,
            r2: 0.0,
            value: 0.0,
            inputs: Vec::with_capacity(period),
            has_inputs: false,
            initialized: false,
        }
    }

    pub fn update_raw(&mut self, close: f64) {
        self.inputs.push(close);

        if !self.initialized {
            self.has_inputs = true;
            if self.inputs.len() >= self.period {
                self.initialized = true;
            } else {
                return;
            }
        }

        // let x_arr
        let x_arr: Vec<f64> = (1..=self.period).map(|x| x as f64).collect();
        let y_arr: Vec<f64> = self.inputs.clone();
        let x_sum: f64 = 0.5 * self.period as f64 * (self.period as f64 + 1.0);
        let x_mul_sum: f64 = x_sum * 2.0f64.mul_add(self.period as f64, 1.0) / 3.0;
        let divisor: f64 = (self.period as f64).mul_add(x_mul_sum, -(x_sum * x_sum));
        let y_sum: f64 = y_arr.iter().sum::<f64>();
        let sum_x_y: f64 = x_arr
            .iter()
            .zip(y_arr.iter())
            .map(|(x, y)| x * y)
            .sum::<f64>();

        self.slope = (self.period as f64).mul_add(sum_x_y, -(x_sum * y_sum)) / divisor;
        self.intercept = y_sum.mul_add(x_mul_sum, -(x_sum * sum_x_y)) / divisor;

        let residuals: Vec<f64> = x_arr
            .into_iter()
            .zip(y_arr.clone())
            .map(|(x, y)| self.slope.mul_add(x, self.intercept) - y)
            .collect();

        self.value = residuals.last().unwrap() + y_arr.last().unwrap();
        self.degree = 180.0 / std::f64::consts::PI * self.slope.atan();
        self.cfo = 100.0 * residuals.last().unwrap() / y_arr.last().unwrap();
        let mean: f64 = y_arr.iter().sum::<f64>() / y_arr.len() as f64;
        self.r2 = 1.0
            - residuals.iter().map(|r| r * r).sum::<f64>()
                / y_arr.iter().map(|y| (y - mean) * (y - mean)).sum::<f64>();
    }
}

////////////////////////////////////////////////////////////////////////////////
// Tests
////////////////////////////////////////////////////////////////////////////////
#[cfg(test)]
mod tests {
    use nautilus_model::data::Bar;
    use rstest::rstest;

    use crate::{
        average::lr::LinearRegression,
        indicator::Indicator,
        stubs::{bar_ethusdt_binance_minute_bid, indicator_lr_10},
    };

    #[rstest]
    fn test_psl_initialized(indicator_lr_10: LinearRegression) {
        let display_str = format!("{indicator_lr_10}");
        assert_eq!(display_str, "LinearRegression(10)");
        assert_eq!(indicator_lr_10.period, 10);
        assert!(!indicator_lr_10.initialized);
        assert!(!indicator_lr_10.has_inputs);
    }

    #[rstest]
    fn test_value_with_one_input(mut indicator_lr_10: LinearRegression) {
        indicator_lr_10.update_raw(1.0);
        assert_eq!(indicator_lr_10.value, 0.0);
    }

    #[rstest]
    fn test_value_with_three_inputs(mut indicator_lr_10: LinearRegression) {
        indicator_lr_10.update_raw(1.0);
        indicator_lr_10.update_raw(2.0);
        indicator_lr_10.update_raw(3.0);
        assert_eq!(indicator_lr_10.value, 0.0);
    }

    #[rstest]
    fn test_value_with_ten_inputs(mut indicator_lr_10: LinearRegression) {
        indicator_lr_10.update_raw(1.00000);
        indicator_lr_10.update_raw(1.00010);
        indicator_lr_10.update_raw(1.00030);
        indicator_lr_10.update_raw(1.00040);
        indicator_lr_10.update_raw(1.00050);
        indicator_lr_10.update_raw(1.00060);
        indicator_lr_10.update_raw(1.00050);
        indicator_lr_10.update_raw(1.00040);
        indicator_lr_10.update_raw(1.00030);
        indicator_lr_10.update_raw(1.00010);
        indicator_lr_10.update_raw(1.00000);
        assert_eq!(indicator_lr_10.value, 0.800_307_272_727_272_2);
    }

    #[rstest]
    fn test_initialized_with_required_input(mut indicator_lr_10: LinearRegression) {
        for i in 1..10 {
            indicator_lr_10.update_raw(f64::from(i));
        }
        assert!(!indicator_lr_10.initialized);
        indicator_lr_10.update_raw(10.0);
        assert!(indicator_lr_10.initialized);
    }

    #[rstest]
    fn test_handle_bar(mut indicator_lr_10: LinearRegression, bar_ethusdt_binance_minute_bid: Bar) {
        indicator_lr_10.handle_bar(&bar_ethusdt_binance_minute_bid);
        assert_eq!(indicator_lr_10.value, 0.0);
        assert!(indicator_lr_10.has_inputs);
        assert!(!indicator_lr_10.initialized);
    }

    #[rstest]
    fn test_reset(mut indicator_lr_10: LinearRegression) {
        indicator_lr_10.update_raw(1.0);
        indicator_lr_10.reset();
        assert_eq!(indicator_lr_10.value, 0.0);
        assert_eq!(indicator_lr_10.inputs.len(), 0);
        assert_eq!(indicator_lr_10.slope, 0.0);
        assert_eq!(indicator_lr_10.intercept, 0.0);
        assert_eq!(indicator_lr_10.degree, 0.0);
        assert_eq!(indicator_lr_10.cfo, 0.0);
        assert_eq!(indicator_lr_10.r2, 0.0);
        assert!(!indicator_lr_10.has_inputs);
        assert!(!indicator_lr_10.initialized);
    }
}