nautilus_core/time.rs
1// -------------------------------------------------------------------------------------------------
2// Copyright (C) 2015-2025 Nautech Systems Pty Ltd. All rights reserved.
3// https://nautechsystems.io
4//
5// Licensed under the GNU Lesser General Public License Version 3.0 (the "License");
6// You may not use this file except in compliance with the License.
7// You may obtain a copy of the License at https://www.gnu.org/licenses/lgpl-3.0.en.html
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14// -------------------------------------------------------------------------------------------------
15
16//! The core `AtomicTime` for real-time and static clocks.
17//!
18//! This module provides an atomic time abstraction that supports both real-time and static
19//! clocks. It ensures thread-safe operations and monotonic time retrieval with nanosecond precision.
20//!
21//! # Modes
22//!
23//! - **Real-time mode:** The clock continuously syncs with system wall-clock time (via
24//! [`SystemTime::now()`]). To ensure strict monotonic increments across multiple threads,
25//! the internal updates use an atomic compare-and-exchange loop (`time_since_epoch`).
26//! While this guarantees that every new timestamp is at least one nanosecond greater than the
27//! last, it may introduce higher contention if many threads call it heavily.
28//!
29//! - **Static mode:** The clock is manually controlled via [`AtomicTime::set_time`] or [`AtomicTime::increment_time`],
30//! which can be useful for simulations or backtesting. You can switch modes at runtime using
31//! [`AtomicTime::make_realtime`] or [`AtomicTime::make_static`]. In **static mode**, we use
32//! acquire/release semantics so that updates from one thread can be observed by another;
33//! however, we do not enforce strict global ordering for manual updates. If you need strong,
34//! multi-threaded ordering in **static mode**, you must coordinate higher-level synchronization yourself.
35
36use std::{
37 ops::Deref,
38 sync::{
39 OnceLock,
40 atomic::{AtomicBool, AtomicU64, Ordering},
41 },
42 time::{Duration, SystemTime, UNIX_EPOCH},
43};
44
45use crate::{
46 UnixNanos,
47 datetime::{NANOSECONDS_IN_MICROSECOND, NANOSECONDS_IN_MILLISECOND, NANOSECONDS_IN_SECOND},
48};
49
50/// Global atomic time in **real-time mode** for use across the system.
51///
52/// This clock operates in **real-time mode**, synchronizing with the system clock.
53/// It provides globally unique, strictly increasing timestamps across threads.
54pub static ATOMIC_CLOCK_REALTIME: OnceLock<AtomicTime> = OnceLock::new();
55
56/// Global atomic time in **static mode** for use across the system.
57///
58/// This clock operates in **static mode**, where the time value can be set or incremented
59/// manually. Useful for backtesting or simulated time control.
60pub static ATOMIC_CLOCK_STATIC: OnceLock<AtomicTime> = OnceLock::new();
61
62/// Returns a static reference to the global atomic clock in **real-time mode**.
63///
64/// This clock uses [`AtomicTime::time_since_epoch`] under the hood, ensuring strictly increasing
65/// timestamps across threads.
66pub fn get_atomic_clock_realtime() -> &'static AtomicTime {
67 ATOMIC_CLOCK_REALTIME.get_or_init(AtomicTime::default)
68}
69
70/// Returns a static reference to the global atomic clock in **static mode**.
71///
72/// This clock allows manual time control via [`AtomicTime::set_time`] or [`AtomicTime::increment_time`],
73/// and does not automatically sync with system time.
74pub fn get_atomic_clock_static() -> &'static AtomicTime {
75 ATOMIC_CLOCK_STATIC.get_or_init(|| AtomicTime::new(false, UnixNanos::default()))
76}
77
78/// Returns the duration since the UNIX epoch based on [`SystemTime::now()`].
79///
80/// Panics if the system time is set before the UNIX epoch.
81#[inline(always)]
82#[must_use]
83pub fn duration_since_unix_epoch() -> Duration {
84 SystemTime::now()
85 .duration_since(UNIX_EPOCH)
86 .expect("Error calling `SystemTime`")
87}
88
89/// Returns the current UNIX time in nanoseconds, based on [`SystemTime::now()`].
90#[inline(always)]
91#[must_use]
92pub fn nanos_since_unix_epoch() -> u64 {
93 duration_since_unix_epoch().as_nanos() as u64
94}
95
96/// Represents an atomic timekeeping structure.
97///
98/// [`AtomicTime`] can act as a real-time clock or static clock based on its mode.
99/// It uses an [`AtomicU64`] to atomically update the value using only immutable
100/// references.
101///
102/// The `realtime` flag indicates which mode the clock is currently in.
103/// For concurrency, this struct uses atomic operations with appropriate memory orderings:
104/// - **Acquire/Release** for reading/writing in **static mode**,
105/// - **Compare-and-exchange (`AcqRel`)** in real-time mode to guarantee monotonic increments.
106#[repr(C)]
107#[derive(Debug)]
108pub struct AtomicTime {
109 /// Indicates whether the clock is operating in **real-time mode** (`true`) or **static mode** (`false`)
110 pub realtime: AtomicBool,
111 /// The last recorded time (in UNIX nanoseconds). Updated atomically with compare-and-exchange
112 /// in **real-time mode**, or simple store/fetch in **static mode**.
113 pub timestamp_ns: AtomicU64,
114}
115
116impl Deref for AtomicTime {
117 type Target = AtomicU64;
118
119 fn deref(&self) -> &Self::Target {
120 &self.timestamp_ns
121 }
122}
123
124impl Default for AtomicTime {
125 /// Creates a new default [`AtomicTime`] instance in **real-time mode**, starting at the current system time.
126 fn default() -> Self {
127 Self::new(true, UnixNanos::default())
128 }
129}
130
131impl AtomicTime {
132 /// Creates a new [`AtomicTime`] instance.
133 ///
134 /// - If `realtime` is `true`, the provided `time` is used only as an initial placeholder
135 /// and will quickly be overridden by calls to [`AtomicTime::time_since_epoch`].
136 /// - If `realtime` is `false`, this clock starts in **static mode**, with the given `time`
137 /// as its current value.
138 #[must_use]
139 pub fn new(realtime: bool, time: UnixNanos) -> Self {
140 Self {
141 realtime: AtomicBool::new(realtime),
142 timestamp_ns: AtomicU64::new(time.into()),
143 }
144 }
145
146 /// Returns the current time in nanoseconds, based on the clock’s mode.
147 ///
148 /// - In **real-time mode**, calls [`AtomicTime::time_since_epoch`], ensuring strictly increasing
149 /// timestamps across threads, using `AcqRel` semantics for the underlying atomic.
150 /// - In **static mode**, reads the stored time using [`Ordering::Acquire`]. Updates by other
151 /// threads using [`AtomicTime::set_time`] or [`AtomicTime::increment_time`] (Release/AcqRel)
152 /// will be visible here.
153 #[must_use]
154 pub fn get_time_ns(&self) -> UnixNanos {
155 if self.realtime.load(Ordering::Acquire) {
156 self.time_since_epoch()
157 } else {
158 UnixNanos::from(self.timestamp_ns.load(Ordering::Acquire))
159 }
160 }
161
162 /// Return the current time as microseconds.
163 #[must_use]
164 pub fn get_time_us(&self) -> u64 {
165 self.get_time_ns().as_u64() / NANOSECONDS_IN_MICROSECOND
166 }
167
168 /// Return the current time as milliseconds.
169 #[must_use]
170 pub fn get_time_ms(&self) -> u64 {
171 self.get_time_ns().as_u64() / NANOSECONDS_IN_MILLISECOND
172 }
173
174 /// Return the current time as seconds.
175 #[must_use]
176 pub fn get_time(&self) -> f64 {
177 self.get_time_ns().as_f64() / (NANOSECONDS_IN_SECOND as f64)
178 }
179
180 /// Manually sets a new time for the clock (only meaningful in **static mode**).
181 ///
182 /// This uses an atomic store with [`Ordering::Release`], so any thread reading with
183 /// [`Ordering::Acquire`] will see the updated time. This does *not* enforce a total ordering
184 /// among all threads, but is enough to ensure that once a thread sees this update, it also
185 /// sees all writes made before this call in the writing thread.
186 ///
187 /// Typically used in single-threaded scenarios or coordinated concurrency in **static mode**,
188 /// since there’s no global ordering across threads.
189 pub fn set_time(&self, time: UnixNanos) {
190 self.store(time.into(), Ordering::Release);
191 }
192
193 /// Increments the current time by `delta` nanoseconds and returns the *updated* value
194 /// (only meaningful in **static mode**).
195 ///
196 /// Uses `fetch_add` with [`Ordering::AcqRel`], ensuring that:
197 /// - The increment is atomic (no lost updates if multiple threads do increments).
198 /// - Other threads reading with [`Ordering::Acquire`] will see the incremented result.
199 ///
200 /// Typically used in single-threaded scenarios or coordinated concurrency in **static mode**,
201 /// since there’s no global ordering across threads.
202 pub fn increment_time(&self, delta: u64) -> UnixNanos {
203 UnixNanos::from(self.fetch_add(delta, Ordering::AcqRel) + delta)
204 }
205
206 /// Retrieves and updates the current “real-time” clock, returning a strictly increasing
207 /// timestamp based on system time.
208 ///
209 /// Internally:
210 /// - We fetch `now` from [`SystemTime::now()`].
211 /// - We do an atomic compare-and-exchange (using [`Ordering::AcqRel`]) to ensure the stored
212 /// timestamp is never less than the last timestamp.
213 ///
214 /// This ensures:
215 /// 1. **Monotonic increments**: The returned timestamp is strictly greater than the previous
216 /// one (by at least 1 nanosecond).
217 /// 2. **No backward jumps**: If the OS time moves backward, we ignore that shift to preserve
218 /// monotonicity.
219 /// 3. **Visibility**: In a multi-threaded environment, other threads see the updated value
220 /// once this compare-and-exchange completes.
221 ///
222 /// Note that under heavy contention (many threads calling this in tight loops), the CAS loop
223 /// may increase latency. If you need extremely high-frequency, concurrent updates, consider
224 /// using a more specialized approach or relaxing some ordering requirements.
225 pub fn time_since_epoch(&self) -> UnixNanos {
226 // This method guarantees strict consistency but may incur a performance cost under
227 // high contention due to retries in the `compare_exchange` loop.
228 let now = nanos_since_unix_epoch();
229 loop {
230 // Acquire to observe the latest stored value
231 let last = self.load(Ordering::Acquire);
232 let next = now.max(last + 1);
233 // AcqRel on success ensures this new value is published,
234 // Acquire on failure reloads if we lost a CAS race.
235 match self.compare_exchange(last, next, Ordering::AcqRel, Ordering::Acquire) {
236 Ok(_) => return UnixNanos::from(next),
237 Err(_) => continue,
238 }
239 }
240 }
241
242 /// Switches the clock to **real-time mode** (`realtime = true`).
243 ///
244 /// Uses [`Ordering::SeqCst`] for the mode store, which ensures a global ordering for the
245 /// mode switch if other threads also do `SeqCst` loads/stores of `realtime`.
246 /// Typically, switching modes is done infrequently, so the performance impact of `SeqCst`
247 /// here is acceptable.
248 pub fn make_realtime(&self) {
249 self.realtime.store(true, Ordering::SeqCst);
250 }
251
252 /// Switches the clock to **static mode** (`realtime = false`).
253 ///
254 /// Uses [`Ordering::SeqCst`] for the mode store, which ensures a global ordering for the
255 /// mode switch if other threads also do `SeqCst` loads/stores of `realtime`.
256 pub fn make_static(&self) {
257 self.realtime.store(false, Ordering::SeqCst);
258 }
259}
260
261////////////////////////////////////////////////////////////////////////////////
262// Tests
263////////////////////////////////////////////////////////////////////////////////
264#[cfg(test)]
265mod tests {
266 use std::sync::Arc;
267
268 use rstest::*;
269
270 use super::*;
271
272 #[rstest]
273 fn test_global_clocks_initialization() {
274 let realtime_clock = get_atomic_clock_realtime();
275 assert!(realtime_clock.get_time_ns().as_u64() > 0);
276
277 let static_clock = get_atomic_clock_static();
278 static_clock.set_time(UnixNanos::from(500_000_000)); // 500 ms
279 assert_eq!(static_clock.get_time_ns().as_u64(), 500_000_000);
280 }
281
282 #[rstest]
283 fn test_mode_switching() {
284 let time = AtomicTime::new(true, UnixNanos::default());
285
286 // Verify real-time mode
287 let realtime_ns = time.get_time_ns();
288 assert!(realtime_ns.as_u64() > 0);
289
290 // Switch to static mode
291 time.make_static();
292 time.set_time(UnixNanos::from(1_000_000_000)); // 1 second
293 let static_ns = time.get_time_ns();
294 assert_eq!(static_ns.as_u64(), 1_000_000_000);
295
296 // Switch back to real-time mode
297 time.make_realtime();
298 let new_realtime_ns = time.get_time_ns();
299 assert!(new_realtime_ns.as_u64() > static_ns.as_u64());
300 }
301
302 #[rstest]
303 fn test_mode_switching_concurrent() {
304 let clock = Arc::new(AtomicTime::new(true, UnixNanos::default()));
305 let num_threads = 4;
306 let iterations = 10000;
307 let mut handles = Vec::with_capacity(num_threads);
308
309 for _ in 0..num_threads {
310 let clock_clone = Arc::clone(&clock);
311 let handle = std::thread::spawn(move || {
312 for i in 0..iterations {
313 if i % 2 == 0 {
314 clock_clone.make_static();
315 } else {
316 clock_clone.make_realtime();
317 }
318 // Retrieve the time; we’re not asserting a particular value here,
319 // but at least we’re exercising the mode switch logic under concurrency.
320 let _ = clock_clone.get_time_ns();
321 }
322 });
323 handles.push(handle);
324 }
325
326 for handle in handles {
327 handle.join().unwrap();
328 }
329 }
330
331 #[rstest]
332 fn test_static_time_is_stable() {
333 // Create a clock in static mode with an initial value
334 let clock = AtomicTime::new(false, UnixNanos::from(42));
335 let time1 = clock.get_time_ns();
336
337 // Sleep a bit to give the system time to change, if the clock were using real-time
338 std::thread::sleep(std::time::Duration::from_millis(10));
339 let time2 = clock.get_time_ns();
340
341 // In static mode, the value should remain unchanged
342 assert_eq!(time1, time2);
343 }
344
345 #[rstest]
346 fn test_increment_time() {
347 // Start in static mode
348 let time = AtomicTime::new(false, UnixNanos::from(0));
349
350 let updated_time = time.increment_time(500);
351 assert_eq!(updated_time.as_u64(), 500);
352
353 let updated_time = time.increment_time(1_000);
354 assert_eq!(updated_time.as_u64(), 1_500);
355 }
356
357 #[rstest]
358 fn test_nanos_since_unix_epoch_vs_system_time() {
359 let unix_nanos = nanos_since_unix_epoch();
360 let system_ns = duration_since_unix_epoch().as_nanos() as u64;
361 assert!((unix_nanos as i64 - system_ns as i64).abs() < NANOSECONDS_IN_SECOND as i64);
362 }
363
364 #[rstest]
365 fn test_time_since_epoch_monotonicity() {
366 let clock = get_atomic_clock_realtime();
367 let mut previous = clock.time_since_epoch();
368 for _ in 0..1_000_000 {
369 let current = clock.time_since_epoch();
370 assert!(current > previous);
371 previous = current;
372 }
373 }
374
375 #[rstest]
376 fn test_time_since_epoch_strictly_increasing_concurrent() {
377 let time = Arc::new(AtomicTime::new(true, UnixNanos::default()));
378 let num_threads = 4;
379 let iterations = 100_000;
380 let mut handles = Vec::with_capacity(num_threads);
381
382 for thread_id in 0..num_threads {
383 let time_clone = Arc::clone(&time);
384
385 let handle = std::thread::spawn(move || {
386 let mut previous = time_clone.time_since_epoch().as_u64();
387
388 for i in 0..iterations {
389 let current = time_clone.time_since_epoch().as_u64();
390 assert!(
391 current > previous,
392 "Thread {thread_id}: iteration {i}: time did not increase: previous={previous}, current={current}",
393 );
394 previous = current;
395 }
396 });
397
398 handles.push(handle);
399 }
400
401 for handle in handles {
402 handle.join().unwrap();
403 }
404 }
405
406 #[rstest]
407 fn test_duration_since_unix_epoch() {
408 let time = AtomicTime::new(true, UnixNanos::default());
409 let duration = Duration::from_nanos(time.get_time_ns().into());
410 let now = SystemTime::now();
411
412 // Check if the duration is close to the actual difference between now and UNIX_EPOCH
413 let delta = now
414 .duration_since(UNIX_EPOCH)
415 .unwrap()
416 .checked_sub(duration);
417 assert!(delta.unwrap_or_default() < Duration::from_millis(100));
418
419 // Check if the duration is greater than a certain value (assuming the test is run after that point)
420 assert!(duration > Duration::from_secs(1_650_000_000));
421 }
422
423 #[rstest]
424 fn test_unix_timestamp_is_monotonic_increasing() {
425 let time = AtomicTime::new(true, UnixNanos::default());
426 let result1 = time.get_time();
427 let result2 = time.get_time();
428 let result3 = time.get_time();
429 let result4 = time.get_time();
430 let result5 = time.get_time();
431
432 assert!(result2 >= result1);
433 assert!(result3 >= result2);
434 assert!(result4 >= result3);
435 assert!(result5 >= result4);
436 assert!(result1 > 1_650_000_000.0);
437 }
438
439 #[rstest]
440 fn test_unix_timestamp_ms_is_monotonic_increasing() {
441 let time = AtomicTime::new(true, UnixNanos::default());
442 let result1 = time.get_time_ms();
443 let result2 = time.get_time_ms();
444 let result3 = time.get_time_ms();
445 let result4 = time.get_time_ms();
446 let result5 = time.get_time_ms();
447
448 assert!(result2 >= result1);
449 assert!(result3 >= result2);
450 assert!(result4 >= result3);
451 assert!(result5 >= result4);
452 assert!(result1 >= 1_650_000_000_000);
453 }
454
455 #[rstest]
456 fn test_unix_timestamp_us_is_monotonic_increasing() {
457 let time = AtomicTime::new(true, UnixNanos::default());
458 let result1 = time.get_time_us();
459 let result2 = time.get_time_us();
460 let result3 = time.get_time_us();
461 let result4 = time.get_time_us();
462 let result5 = time.get_time_us();
463
464 assert!(result2 >= result1);
465 assert!(result3 >= result2);
466 assert!(result4 >= result3);
467 assert!(result5 >= result4);
468 assert!(result1 > 1_650_000_000_000_000);
469 }
470
471 #[rstest]
472 fn test_unix_timestamp_ns_is_monotonic_increasing() {
473 let time = AtomicTime::new(true, UnixNanos::default());
474 let result1 = time.get_time_ns();
475 let result2 = time.get_time_ns();
476 let result3 = time.get_time_ns();
477 let result4 = time.get_time_ns();
478 let result5 = time.get_time_ns();
479
480 assert!(result2 >= result1);
481 assert!(result3 >= result2);
482 assert!(result4 >= result3);
483 assert!(result5 >= result4);
484 assert!(result1.as_u64() > 1_650_000_000_000_000_000);
485 }
486}