nautilus_indicators/momentum/
bb.rs1use std::{
17 collections::VecDeque,
18 fmt::{Debug, Display},
19};
20
21use nautilus_model::data::{Bar, QuoteTick, TradeTick};
22
23use crate::{
24 average::{MovingAverageFactory, MovingAverageType},
25 indicator::{Indicator, MovingAverage},
26};
27
28#[repr(C)]
29#[derive(Debug)]
30#[cfg_attr(
31 feature = "python",
32 pyo3::pyclass(module = "nautilus_trader.core.nautilus_pyo3.indicators", unsendable)
33)]
34pub struct BollingerBands {
35 pub period: usize,
36 pub k: f64,
37 pub ma_type: MovingAverageType,
38 pub upper: f64,
39 pub middle: f64,
40 pub lower: f64,
41 pub initialized: bool,
42 ma: Box<dyn MovingAverage + Send + 'static>,
43 prices: VecDeque<f64>,
44 has_inputs: bool,
45}
46
47impl Display for BollingerBands {
48 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
49 write!(
50 f,
51 "{}({},{},{})",
52 self.name(),
53 self.period,
54 self.k,
55 self.ma_type,
56 )
57 }
58}
59
60impl Indicator for BollingerBands {
61 fn name(&self) -> String {
62 stringify!(BollingerBands).to_string()
63 }
64
65 fn has_inputs(&self) -> bool {
66 self.has_inputs
67 }
68
69 fn initialized(&self) -> bool {
70 self.initialized
71 }
72
73 fn handle_quote(&mut self, quote: &QuoteTick) {
74 let bid = quote.bid_price.raw as f64;
75 let ask = quote.ask_price.raw as f64;
76 let mid = (bid + ask) / 2.0;
77 self.update_raw(ask, bid, mid);
78 }
79
80 fn handle_trade(&mut self, trade: &TradeTick) {
81 let price = trade.price.raw as f64;
82 self.update_raw(price, price, price);
83 }
84
85 fn handle_bar(&mut self, bar: &Bar) {
86 self.update_raw((&bar.high).into(), (&bar.low).into(), (&bar.close).into());
87 }
88
89 fn reset(&mut self) {
90 self.ma.reset();
91 self.prices.clear();
92 self.upper = 0.0;
93 self.middle = 0.0;
94 self.lower = 0.0;
95 self.has_inputs = false;
96 self.initialized = false;
97 }
98}
99
100impl BollingerBands {
101 #[must_use]
103 pub fn new(period: usize, k: f64, ma_type: Option<MovingAverageType>) -> Self {
104 Self {
105 period,
106 k,
107 ma_type: ma_type.unwrap_or(MovingAverageType::Simple),
108 has_inputs: false,
109 initialized: false,
110 upper: 0.0,
111 middle: 0.0,
112 lower: 0.0,
113 ma: MovingAverageFactory::create(ma_type.unwrap_or(MovingAverageType::Simple), period),
114 prices: VecDeque::with_capacity(period),
115 }
116 }
117
118 pub fn update_raw(&mut self, high: f64, low: f64, close: f64) {
119 let typical = (high + low + close) / 3.0;
120 self.prices.push_back(typical);
121 self.ma.update_raw(typical);
122
123 if !self.initialized {
125 self.has_inputs = true;
126 if self.prices.len() >= self.period {
127 self.initialized = true;
128 }
129 }
130
131 let std = fast_std_with_mean(self.prices.clone(), self.ma.value());
133
134 self.upper = self.k.mul_add(std, self.ma.value());
135 self.middle = self.ma.value();
136 self.lower = self.k.mul_add(-std, self.ma.value());
137 }
138}
139
140#[must_use]
141pub fn fast_std_with_mean(values: VecDeque<f64>, mean: f64) -> f64 {
142 if values.is_empty() {
143 return 0.0;
144 }
145
146 let mut std_dev = 0.0;
147 for v in &values {
148 let diff = v - mean;
149 std_dev += diff * diff;
150 }
151
152 (std_dev / values.len() as f64).sqrt()
153}
154
155#[cfg(test)]
159mod tests {
160 use rstest::rstest;
161
162 use super::*;
163 use crate::stubs::bb_10;
164
165 #[rstest]
166 fn test_name_returns_expected_string(bb_10: BollingerBands) {
167 assert_eq!(bb_10.name(), "BollingerBands");
168 }
169
170 #[rstest]
171 fn test_str_repr_returns_expected_string(bb_10: BollingerBands) {
172 assert_eq!(format!("{bb_10}"), "BollingerBands(10,0.1,SIMPLE)");
173 }
174
175 #[rstest]
176 fn test_period_returns_expected_value(bb_10: BollingerBands) {
177 assert_eq!(bb_10.period, 10);
178 assert_eq!(bb_10.k, 0.1);
179 }
180
181 #[rstest]
182 fn test_initialized_without_inputs_returns_false(bb_10: BollingerBands) {
183 assert!(!bb_10.initialized());
184 }
185
186 #[rstest]
187 fn test_value_with_all_higher_inputs_returns_expected_value(mut bb_10: BollingerBands) {
188 let high_values = [
189 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0,
190 ];
191 let low_values = [
192 0.9, 1.9, 2.9, 3.9, 4.9, 5.9, 6.9, 7.9, 8.9, 9.9, 10.1, 10.2, 10.3, 11.1, 11.4,
193 ];
194
195 let close_values = [
196 0.95, 1.95, 2.95, 3.95, 4.95, 5.95, 6.95, 7.95, 8.95, 9.95, 10.05, 10.15, 10.25, 11.05,
197 11.45,
198 ];
199
200 for i in 0..15 {
201 bb_10.update_raw(high_values[i], low_values[i], close_values[i]);
202 }
203
204 assert!(bb_10.initialized());
205 assert_eq!(bb_10.upper, 10.108_266_446_984_462);
206 assert_eq!(bb_10.middle, 9.676_666_666_666_666);
207 assert_eq!(bb_10.lower, 9.245_066_886_348_87);
208 }
209
210 #[rstest]
211 fn test_reset_successfully_returns_indicator_to_fresh_state(mut bb_10: BollingerBands) {
212 bb_10.update_raw(1.00020, 1.00050, 1.00030);
213 bb_10.update_raw(1.00030, 1.00060, 1.00040);
214 bb_10.update_raw(1.00070, 1.00080, 1.00075);
215
216 bb_10.reset();
217
218 assert!(!bb_10.initialized());
219 assert_eq!(bb_10.upper, 0.0);
220 assert_eq!(bb_10.middle, 0.0);
221 assert_eq!(bb_10.lower, 0.0);
222 assert_eq!(bb_10.prices.len(), 0);
223 }
224}