nautilus_backtest/
engine.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
// -------------------------------------------------------------------------------------------------
//  Copyright (C) 2015-2024 Nautech Systems Pty Ltd. All rights reserved.
//  https://nautechsystems.io
//
//  Licensed under the GNU Lesser General Public License Version 3.0 (the "License");
//  You may not use this file except in compliance with the License.
//  You may obtain a copy of the License at https://www.gnu.org/licenses/lgpl-3.0.en.html
//
//  Unless required by applicable law or agreed to in writing, software
//  distributed under the License is distributed on an "AS IS" BASIS,
//  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//  See the License for the specific language governing permissions and
//  limitations under the License.
// -------------------------------------------------------------------------------------------------

//! The core `BacktestEngine` for backtesting on historical data.

use nautilus_common::{clock::TestClock, timer::TimeEventHandlerV2};
use nautilus_core::nanos::UnixNanos;

/// Provides a means of accumulating and draining time event handlers.
pub struct TimeEventAccumulator {
    event_handlers: Vec<TimeEventHandlerV2>,
}

impl TimeEventAccumulator {
    /// Creates a new [`TimeEventAccumulator`] instance.
    #[must_use]
    pub const fn new() -> Self {
        Self {
            event_handlers: Vec::new(),
        }
    }

    /// Advance the given clock to the `to_time_ns`.
    pub fn advance_clock(&mut self, clock: &mut TestClock, to_time_ns: UnixNanos, set_time: bool) {
        let events = clock.advance_time(to_time_ns, set_time);
        let handlers = clock.match_handlers(events);
        self.event_handlers.extend(handlers);
    }

    /// Drain the accumulated time event handlers in sorted order (by the events `ts_event`).
    pub fn drain(&mut self) -> Vec<TimeEventHandlerV2> {
        // stable sort is not necessary since there is no relation between
        // events of the same clock. Only time based ordering is needed.
        self.event_handlers
            .sort_unstable_by_key(|v| v.event.ts_event);
        self.event_handlers.drain(..).collect()
    }
}

impl Default for TimeEventAccumulator {
    /// Creates a new default [`TimeEventAccumulator`] instance.
    fn default() -> Self {
        Self::new()
    }
}

////////////////////////////////////////////////////////////////////////////////
// Tests
////////////////////////////////////////////////////////////////////////////////
#[cfg(test)]
mod tests {
    use nautilus_common::timer::{TimeEvent, TimeEventCallback};
    use nautilus_core::uuid::UUID4;
    use pyo3::{prelude::*, types::PyList, Py, Python};
    use rstest::*;
    use ustr::Ustr;

    use super::*;

    #[rstest]
    fn test_accumulator_drain_sorted() {
        pyo3::prepare_freethreaded_python();

        Python::with_gil(|py| {
            let py_list = PyList::empty_bound(py);
            let py_append = Py::from(py_list.getattr("append").unwrap());

            let mut accumulator = TimeEventAccumulator::new();

            let time_event1 = TimeEvent::new(
                Ustr::from("TEST_EVENT_1"),
                UUID4::new(),
                100.into(),
                100.into(),
            );
            let time_event2 = TimeEvent::new(
                Ustr::from("TEST_EVENT_2"),
                UUID4::new(),
                300.into(),
                300.into(),
            );
            let time_event3 = TimeEvent::new(
                Ustr::from("TEST_EVENT_3"),
                UUID4::new(),
                200.into(),
                200.into(),
            );

            // Note: as_ptr returns a borrowed pointer. It is valid as long
            // as the object is in scope. In this case `callback_ptr` is valid
            // as long as `py_append` is in scope.
            let callback = TimeEventCallback::from(py_append.into_py(py));

            let handler1 = TimeEventHandlerV2::new(time_event1.clone(), callback.clone());
            let handler2 = TimeEventHandlerV2::new(time_event2.clone(), callback.clone());
            let handler3 = TimeEventHandlerV2::new(time_event3.clone(), callback);

            accumulator.event_handlers.push(handler1);
            accumulator.event_handlers.push(handler2);
            accumulator.event_handlers.push(handler3);

            let drained_handlers = accumulator.drain();

            assert_eq!(drained_handlers.len(), 3);
            assert_eq!(drained_handlers[0].event.ts_event, time_event1.ts_event);
            assert_eq!(drained_handlers[1].event.ts_event, time_event3.ts_event);
            assert_eq!(drained_handlers[2].event.ts_event, time_event2.ts_event);
        });
    }
}